// Copyright Paul A. Bristow 2016 // Copyright John Z. Maddock 2016 // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or // copy at http ://www.boost.org/LICENSE_1_0.txt). /*! brief Example of using Lambert W function to compute current through a diode connected transistor with preset series resistance. \details T. C. Banwell and A. Jayakumar, Exact analytical solution of current flow through diode with series resistance, Electron Letters, 36(4):291-2 (2000) DOI: doi.org/10.1049/el:20000301 The current through a diode connected NPN bipolar junction transistor (BJT) type 2N2222 (See https://en.wikipedia.org/wiki/2N2222 and https://www.fairchildsemi.com/datasheets/PN/PN2222.pdf Datasheet) was measured, for a voltage between 0.3 to 1 volt, see Fig 2 for a log plot, showing a knee visible at about 0.6 V. The transistor parameter isat was estimated to be 25 fA and the ideality factor = 1.0. The intrinsic emitter resistance re was estimated from the rsat = 0 data to be 0.3 ohm. The solid curves in Figure 2 are calculated using equation 5 with rsat included with re. http://www3.imperial.ac.uk/pls/portallive/docs/1/7292572.PDF */ #include using boost::math::lambert_w0; #include // using std::cout; // using std::endl; #include #include #include #include #include /*! Compute thermal voltage as a function of temperature, about 25 mV at room temperature. https://en.wikipedia.org/wiki/Boltzmann_constant#Role_in_semiconductor_physics:_the_thermal_voltage \param temperature Temperature (degrees centigrade). */ const double v_thermal(double temperature) { constexpr const double boltzmann_k = 1.38e-23; // joules/kelvin. const double charge_q = 1.6021766208e-19; // Charge of an electron (columb). double temp =+ 273; // Degrees C to K. return boltzmann_k * temp / charge_q; } // v_thermal /*! Banwell & Jayakumar, equation 2 */ double i(double isat, double vd, double vt, double nu) { double i = isat * (exp(vd / (nu * vt)) - 1); return i; } // /*! Banwell & Jayakumar, Equation 4. i current flow = isat v voltage source. isat reverse saturation current in equation 4. (might implement equation 4 instead of simpler equation 5?). vd voltage drop = v - i* rs (equation 1). vt thermal voltage, 0.0257025 = 25 mV. nu junction ideality factor (default = unity), also known as the emission coefficient. re intrinsic emitter resistance, estimated to be 0.3 ohm from low current. rsat reverse saturation current \param v Voltage V to compute current I(V). \param vt Thermal voltage, for example 0.0257025 = 25 mV, computed from boltzmann_k * temp / charge_q; \param rsat Resistance in series with the diode. \param re Instrinsic emitter resistance (estimated to be 0.3 ohm from the Rs = 0 data) \param isat Reverse saturation current (See equation 2). \param nu Ideality factor (default = unity). \returns I amp as function of V volt. */ double iv(double v, double vt, double rsat, double re, double isat, double nu = 1.) { // V thermal 0.0257025 = 25 mV // was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5. rsat = rsat + re; double i = nu * vt / rsat; std::cout << "nu * vt / rsat = " << i << std::endl; // 0.000103223 double x = isat * rsat / (nu * vt); std::cout << "isat * rsat / (nu * vt) = " << x << std::endl; double eterm = (v + isat * rsat) / (nu * vt); std::cout << "(v + isat * rsat) / (nu * vt) = " << eterm << std::endl; double e = exp(eterm); std::cout << "exp(eterm) = " << e << std::endl; double w0 = lambert_w0(x * e); std::cout << "w0 = " << w0 << std::endl; return i * w0 - isat; } // double iv std::array rss = {0., 2.18, 10., 51., 249}; // series resistance (ohm). std::array vds = { 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; // Diode voltage. int main() { try { std::cout << "Lambert W diode current example." << std::endl; //[lambert_w_diode_example_1 double x = 0.01; //std::cout << "Lambert W (" << x << ") = " << lambert_w(x) << std::endl; // 0.00990147 double nu = 1.0; // Assumed ideal. double vt = v_thermal(25); // v thermal, Shockley equation, expect about 25 mV at room temperature. double boltzmann_k = 1.38e-23; // joules/kelvin double temp = 273 + 25; double charge_q = 1.6e-19; // column vt = boltzmann_k * temp / charge_q; std::cout << "V thermal " << vt << std::endl; // V thermal 0.0257025 = 25 mV double rsat = 0.; double isat = 25.e-15; // 25 fA; std::cout << "Isat = " << isat << std::endl; double re = 0.3; // Estimated from slope of straight section of graph (equation 6). double v = 0.9; double icalc = iv(v, vt, 249., re, isat); std::cout << "voltage = " << v << ", current = " << icalc << ", " << log(icalc) << std::endl; // voltage = 0.9, current = 0.00108485, -6.82631 //] [/lambert_w_diode_example_1] } catch (std::exception& ex) { std::cout << ex.what() << std::endl; } } // int main() /* Output: //[lambert_w_output_1 Lambert W diode current example. V thermal 0.0257025 Isat = 2.5e-14 nu * vt / rsat = 0.000103099 isat * rsat / (nu * vt) = 2.42486e-10 (v + isat * rsat) / (nu * vt) = 35.016 exp(eterm) = 1.61167e+15 w0 = 10.5225 voltage = 0.9, current = 0.00108485, -6.82631 //] [/lambert_w_output_1] */