A Proposal to Add Safe Integer
Types to the Standard Library

Abstract
Document number: P0O228R2
Project: Programming Language C++
Audience: SG-6
Author: Raobert Ramey
Contact: ramey@rrsd.com
Date: 2016-02-16
Table of Contents
Y o) (A7 (o o PP PP TUPRPTRRPPPIN 1
2. IMPECt ON the SEANTAIT ...t ettt et e e e et et e e et et e e e eebe e e e e abt e eeeebanaeeees 2
B L= o I B = ol o TSP UPPPTRRPPPPIN 2
4. EXIStNG IMPIEMENTBLIONS ceeett ettt ettt e ettt e ettt e e et et oo et ettt e e e et b e e e e ebt e e eeebtaeeeennaeaees 3
5. TEChNICal SPECITICALIONS ... eeett ettt ettt e ettt e et e b e et e et e e et eb e et et e et e ab e e e enaans 4
I T Y oL s o (11 £ 011< 01K TP ORI 4
N800 o PP USUPPPPRPT 4
110 o = £ PP 6
S 1 (U 1= o PP USUPPPPRRT 7
LS 1Y/ o= S PP PP 9
T = ISP 9
Dol g o (L] o ISP PP UUPPPPRPPPPN 9
[N [o] = o] o E TP TUPPTPR 9
TEMPIAIE PalraMELEIS ...ttt e et e ettt e et e et e e e e e e s 9
[Leo (= o PP 9
RV Lo I o =SS o] OO P R SPPPTTR 10
[== o[USRS 10
EXBIMPIE OF USE <.ttt ettt e et e et e e et e et et e 10
7. ACKNOWIEUGEIMENES ... ettt e et oottt e et e et oo ettt e oo et e b e e e et e be e e e e e ba e e e ettt e e e eeba e eeeebaaeeees 10
B REFEIEINCES ...ttt e et e et et e e e e e e aee 10

1. Motivation

Arithmetic operations in C++ are NOT guaranteed to yield a correct mathematical result. This feature is inherited from the early
days of C. The behavior of i nt, unsi gned i nt and others were designed to map closely to the underlying hardware. Computer
hardware implements these types as a fixed number of bits. When the result of arithmetic operations exceeds this number of bits,
the result will not be arithmetically correct. The following example illustrates this problem.

int f(int x, int y){

A Proposal to Add Safe Integer
Typesto the Standard Library

/1 this returns an invalid result for sone | egal values of x and y !
return x + vy,

2. Impact On the Standard

This proposal isapure library extension. It does not require changes to any standard classes, functions or headers. It might benefit
from relaxing some of the conditions on aggregate types. It has been implemented in and requires standard C++/14.

3. Design Decisions

The template class is designed to function as closely as possible as a drop-in replacement for corresponding built-in integer types.
1. "Drop In Replacement for Any Integer Type"
Thetemplate classisdesigned to function as closely as possible as adrop-in replacement for corresponding built-in integer types.
Ideally, one should be able to just substitute safe<T> for all instances of T in any program and expect it compile and execute

as before with no other changes.

Since C++ permits freely mixing signed and unsigned integer typesin expressions, safe versions of these types can also be. This
complicates the implementation of the library to significant degree.

2. "Return No Incorrect Results'

Usage of a safe type in a binary expression is guaranteed to either return an arithmetically correct result or throw a standard
exception.

3. "Automatically Inter operate with built-in integer types"

The usage of a safe type in binary expression "infects" the expression by returning another safe type. Thisis designed to avoid
accidentally losing the safety of the expression.

4. "Uses <limits> instead of type traits’
Implementation of alibrary such as this necessarily keeps track of the types of data objects. The most common way to do this
isusing type traitssuch asstd::is_integral,std::is_unsigned,std::is_arithnetic, etc. This doesn't work very

well for afew reasons:

These are defined by the standard to apply only to built-in types. Specializing these traits for new types such as safe<int> would
conflict with the standard.

We are allowed to create specialization of std::numeric_limits for our own types - including safe<T>. So thisworks well for us.

safe<T> might be implemented in such as way that it would work for unforeseen integer-like types such as "money”. Numeric
limits has more complete information about these types which might make it easier to extend the library.

5. "Performance”
Performancewill depend on theimplementation and subject to the constraints above. Thisdesign will permit the usage of template

meta-programming to eliminate runtime performance penalties in some cases. In the following example, there is no runtime
penalty required to guarantee that incorrect results will never be generated.

#i ncl ude <cstdint>

A Proposal to Add Safe Integer
Typesto the Standard Library

#i ncl ude <safe>
usi ng nanespace std;

int f(safe<int8_t> i){
/| C++ pronotion rules nake overflow on nultiplication inpossible!
/] cannot fail on return
/'l zero performance penalty
return i * i;

}

int8_t f(safe<int8_t> i){
/| C++ pronotion rules nake overflow on nultiplication inpossible!
/1 but result could be truncated on return
/1 so result nust be checked at runtinme incurring a runtinme penalty
return i * i; /1 cannot overflow on nultiplication,

Some processors have the ability to detect erroneous results but the C++ language doesn't include the ability to exploit these
features. Implementor's of this library will have the option to exploit these features to diminish or eliminate runtime costs.

If al elsefailsand the runtime cost is deemed too large for the program to bear, users will have the option of creating their own
aliasesfor the typesthe program uses and assign them according to the whether they are building a"Debug" or "Release” version.
Thisisnot ideal, but would still be preferable to the current approach which generally consists of ignoring the possibility that C
++ numeric operations may produce arithmetically incorrect results.

6. "No Extra Parameters’
An alternative to this proposa would be a policy based design which would permit usersto select or define actionsto betakenin
the case of errors. Thisis quite possible and likely useful. However, the simplicity usage of the current proposal is an important
feature. So | decided not to include it.

7. "No other safe types"
Other ideas come to mind such as saf e<M n, Max>, safe_| i teral <Val ue>, and others. | excluded these in the spirit of
following the controlling purpose of making a"drop in replacement”. Once one included these types into a program, they change

the semantics of the program so that it's not really C++ any more. Thereis a place for these ideas, (see below), but | don't think
the standard library isthat place.

4. Existing Implementations

This proposal is a simpler version / subset of the Safe Numerics library in development by Robert Ramey on the Boost Library
Incubator [http://rrsd.com/blincubator.com/bi_library/safe-numerics/?gform_post_id=4267]. It is compatible with this proposal but
it also includes:

Policy classes for error handling

Policy classesfor type promotion. These permit substitution of C++ standard type promotion rules with other ones which can reduce
or eliminate the need for runtime error checking code.

Other safe types such as safe_integer_range<Min, Max>.
Complete documentation including internal operation

Without comment, here are implementations of libraries which are in some way similar to this proposal:

http://rrsd.com/blincubator.com/bi_library/safe-numerics/?gform_post_id=426?
http://rrsd.com/blincubator.com/bi_library/safe-numerics/?gform_post_id=426?
http://rrsd.com/blincubator.com/bi_library/safe-numerics/?gform_post_id=426?

A Proposal to Add Safe Integer
Typesto the Standard Library

» Robert Leahy, Safe integer utilities for C++11 [https://github.com/RobertL eahy/Safe]
» David LeBlanc, Safelnt [http://safeint.codeplex.com]

» David Stone, Bounded Integer [http://safeint.codeplex.com]

5. Technical Specifications
5.1. Type Requirements

Numeric<T>

Description
A typeisNumeric if it has the properties of a number.

More specificaly, atype T is Numeric if there exists speciaization of st d: : numeric_l i mi t s<T>. See the documentation for
standard library class numeric_limits. The standard library includes such specializations for all the primitive numeric types. Note
that this concept is distinct from the C++ standard library typetraitsi s_i ntegral andis_arithmeti c. These latter fulfill the
requirement of the concept Numeric. But there are types T which fulfill this concept for whichi s_arit hmeti c<T>::val ue ==
f al se. For example seesaf e_si gned_i nt eger <i nt >.

Notation
T, U V A typethat isamodel of the Numeric
t, u An object of type modeling Numeric
os An object of type std::base_ostreami
is An object of type std::base _istream

Associated Types

std::nuneric_linmts<T> Thenumeric_limits classtemplate provides a C++ program with information about various
properties of the implementation's representation of the arithmetic types. See C++ standard
18.3.2.2.

Valid Expressions

In addition to the expressions defined in Assignable [http://www.sgi.com/tech/stl/Assignable.html] the following expressions must
be valid. Any operations which result in integers which cannot be represented as some Numeric type will throw an exception.

Tablel. General

Expression Return Value
std::nunmeric_|limts<T> is_bounded true

https://github.com/RobertLeahy/Safe
https://github.com/RobertLeahy/Safe
http://safeint.codeplex.com
http://safeint.codeplex.com
http://safeint.codeplex.com
http://safeint.codeplex.com
http://www.sgi.com/tech/stl/Assignable.html
http://www.sgi.com/tech/stl/Assignable.html

A Proposal to Add Safe Integer
Typesto the Standard Library

Expression
std::nunmeric_|limts<T> is_specialized
0s <<t

is >t

Table 2. Unary Operators

Expression
-t

+t

t--

t++

--t

++t

Return Type
T

T

Table 3. Binary Operators

Expression

t

% u

Return Type
\%

\%

bool
bool
bool

bool

Return Value
true
0S &i

is&

Semantics

Invert sign

unary plus - ano op
post decrement
post increment

pre decrement

pre increment

complement

Semantics

subtract u from t

addutot

multiply t by u

dividet by u

t modulusu

shift t left u bits

shift t right by u bits

trueif t less than u, false otherwise
trueif t less than or equal to u, false otherwise
trueif t greater than u, false otherwise

trueif t greater than or equal to u, false otherwise

A Proposal to Add Safe Integer
Typesto the Standard Library

Expression Return Type Semantics

t ==u bool trueif t equal to u, false otherwise

t 1=u bool trueif t not equal to u, false otherwise

t &u \% and of t and u padded out max # bitsint, u

t | u \% or of t and u padded out max # bitsint, u

t ~u \% exclusive or of t and u padded out max # bitsint, u
t =u T assignvalueof utot

t +=u T addutotand assigntot

t -=u T subtract u fromt and assigntot

t *=u T multiply t by uand assign to t

t /=u T dividet by uand assigntot

t & u T and t withu and assigntot

t <<= u T |eft shift the value of t by u bits

t >>=u T right shift the value of t by u hits

t & u T and the value of t with u and assignto t

t |=u T or the value of t with u and assign to t

t ~=u T exclusive or the value of t with u and assignto t
Header

#i ncl ude <safe_nunerics/incl ude/ concepts/ numeri c. hpp> [../../include/concept/numeric.hpp]

Models

int, safe_signed_ integer<int> safe_signed_range<int> etc.
Integer<T>

Description
A typeisfullsthe requirements of an Integer if it has the properties of ainteger.

More specifically, a type T is Integer if there exists specialization of std::numeric_limits<T> for which
std::numeric_limts<T>:: is_integer isequa totrue. Seethe documentation for standard library class numeric_limits.
The standard library includes such specializations for all the primitive numeric types. Note that this concept is distinct from the C+
+ standard library typetraitsi s_i ntegral andis_arithmeti c. Theselatter fulfill the requirement of the concept Numeric. But
there are types which fulfill this concept for whichi s_ari t hnmeti c<T>::val ue == fal se. For example seesaf e<i nt >.

../../include/concept/numeric.hpp
../../include/concept/numeric.hpp

A Proposal to Add Safe Integer
Typesto the Standard Library

Refinement of
Numeric

Valid Expressions

In addition to the expressions defined in Numeric the following expressions must be valid.

Expression Return Value
std::nuneric_limts<T> is_integer true
Header

#i ncl ude <safe_nunerics/incl ude/ concepts/ numeri c. hpp> [../../include/concept/numeric.hpp]
Models

int, safe<int> safe_unsigned_range<0, 11>, etc.

SafeNumeric<T>

Description

This holds an arithmetic value which can be used as a replacement for built-in C++ arithmetic values. These types differ from their
built-in counter partsin that the are guaranteed not to produce invalid arithmetic results.

Refinement of

Numeric
Notation
Symbol Description
T, U Types fulfilling Numeric type requirements
t,u objects of types T, U
S S1, 2 A type fulfilling SafeNumeric type requirements
S, sl, s2 objects of types S
op C++ infix operator
prefix_op C++ prefix operator
postfix_op C++ postfix operator
assign_op C++ assignment operator

../../include/concept/numeric.hpp
../../include/concept/numeric.hpp

A Proposal to Add Safe Integer
Typesto the Standard Library

Valid Expressions

Expression Result Type Description

s opt unspecified S invoke safe C++ operator op and return another SafeNumeric type.

t op s unspecified S invoke safe C++ operator op and return another SafeNumeric type.

sl op s2 unspecified S invoke safe C++ operator op and return another SafeNumeric type.

prefix_op S unspecified S invoke safe C++ operator op and return another SafeNumeric type.

S postfix_op unspecified S invoke safe C++ operator op and return another SafeNumeric type.

s assign_op t S1 convert t to type S1 and assign it to sl. If the value t cannot be represented as an

instance of type S1, it isan error.

S(t) unspecified S construct ainstance of Sfrom avalue of type T. f the value t cannot be represented
as an instance of type S1, it isan error.

S S construct a uninitialized instance of S.
i s_saf e<S> std::true_type typetraitto query whether any type T fulfills the requirements for a SafeNumeric
or type.

std::fal se_type

static_cast<T>(s) convert the value of sto type T. If the value of s cannot be correctly represented
asatypeT, itisan error. Note that implicit casting from a safe type to a built-in
integer type is expressly prohibited and should invoke a compile time error.

Result of any binary operation where one or both of the operandsis a SafeNumeric type is also a SafeNumeric type.

All the expressionsin the above table are const expr expressions
 Binary expressions which are not assignments require that promotion and exception policies be identical.

» Safe Numeric operators will NOT perform standard numeric conversions in order to convert to built-in types.

void f(int);

int main(){
I ong x;
f(x); [/ OK - builtin inplicit version
saf e<l ong> vy;
f(y); /1 conpile time error
return O;

This behavior prevents asaf e<T> from being a"drop-in" replacement for aT.

Complexity Guarantees

There are no explicit complexity guarantees here. However, it would be very surprising if any implementation were to be more
complex that O(0);

A Proposal to Add Safe Integer
Typesto the Standard Library

Invariants

The fundamental requirement of a SafeNumeric type is that implements all C++ operations permitted on it's base type in a way
the prevents the return of an incorrect arithmetic result. Various implementations of this concept may handle circumstances which
produce such results differently (throw exception, compile time trap, etc..) no implementation should return an arithmetically
incorrect result.

Header

#i ncl ude <saf e_nunerics/incl ude/ concept s/ saf e_nuneri c. hpp> [../../include/concept/exception_policy.hpp]
Models

safe<T>

safe signed range<-11, 11>

safe_unsigned range<0, 11>

safe literal<4>

6. Types

6.1. safe<T>

Description

A saf e<T> can beused anywhereatype T can be used. Any expression which usesthistypeisguaranteed to return an arithmetically
correct value or trap in some way.

Notation

Symbol Description

T Underlying type from which a safe type is being derived

Template Parameters

Parameter Type Requirements Description
T Integer [http:// The underlying type. Currently only integer types supported

en.cppreference.com/w/cpp/
typed/is _integral]

See exampl es below.

Model of
Integer

SafeNumeric

../../include/concept/exception_policy.hpp
../../include/concept/exception_policy.hpp
http://en.cppreference.com/w/cpp/types/is_integral
http://en.cppreference.com/w/cpp/types/is_integral
http://en.cppreference.com/w/cpp/types/is_integral
http://en.cppreference.com/w/cpp/types/is_integral

A Proposal to Add Safe Integer
Typesto the Standard Library

Valid Expressions
Implements all expressions defined by the SafeNumeric type requirements.
saf e<T> ismeant to be a"drop-in" replacement of the intrinsic integer types.

The type of an expression of type safe<T> op safe<U> will be safe<R> where R would be the same as the type of the expression T
op U.That is, expressions involving these types will be evaluated into result types which reflect the standard rules for evaluation of
C++ expressions. Should it occur that such evaluation cannot return a correct result, an std::exception will be thrown.

Header

#include <safe> [../../includel/safe_integer. hpp]

Example of use

saf e<T> is meant to be a "drop-in" replacement of the intrinsic integer types. That is, expressions involving these types will be
evaluated into result types which reflect the standard rules for evaluation of C++ expressions. Should it occur that such evaluation
cannot return a correct result, an exception will be thrown.The following program will throw an exception and emit a error message
at runtime if any of several events result in an incorrect arithmetic type. Behavior of this program could vary according to the
machine architecture in question.

#i ncl ude <exception>
#i ncl ude <i ostreanp
#i ncl ude <saf e>

void f(){
usi ng nanmespace std;
safe<int> j;

try {
safe<int> i;
cin >> i; /! could throw overflow !
I I /! could throw overfl ow
}

catch(std::exception & e){
std::cout << e.what() << endl;
}

std::cout << j;

7. Acknowledgements

This proposal is a simplified version of Safe Numeics library proposed for Boost. This effort was inspired by David LeBlanc's
Safelnt Library [http://safeint.codeplex.com] .

8. References

Omer Katz. Safelnt code proposal [http://boost.2283326.n4.nabbl e.comySafel nt-code-proposal-td2663669.html] [http://
www.cert.org/secur e-coding/publications/books/secur e-coding-c-c-second-edition.cfm?] . Boost Developer'sList [https./
groups.google.com/a/isocpp.org/forum/?fromgroupst! forum/std-proposals] . Katz

David LeBlanc. Integer Handling with the C++ Safelnt Class [https://msdn.microsoft.com/en-us/library/ms972705.aspx] .
Microsoft Developer Network [https.//www.cert.org] . January 7, 2004. LeBlanc

10

../../include/safe_integer.hpp
../../include/safe_integer.hpp
http://safeint.codeplex.com
http://safeint.codeplex.com
http://safeint.codeplex.com
http://boost.2283326.n4.nabble.com/SafeInt-code-proposal-td2663669.html
http://boost.2283326.n4.nabble.com/SafeInt-code-proposal-td2663669.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals
https://msdn.microsoft.com/en-us/library/ms972705.aspx
https://msdn.microsoft.com/en-us/library/ms972705.aspx
https://www.cert.org
https://www.cert.org

A Proposal to Add Safe Integer
Typesto the Standard Library

David LeBlanc. Safelnt [https://safeint.codeplex.com] . CodePlex [https.//www.cert.org] . Dec 3, 2014. LeBlanc

Jacques-Louis Lions. Ariane 501 Inquiry Board report [https://en.wikisource.org/wiki/Ariane 501 _Inquiry_Board report] .
Wikisource [https://en.wikisource.org/wiki/Main_Page] . July 19, 1996. Lions

Daniel Plakosh. Safe Integer Operations [https://buildsecurityin.us-cert.gov/bsi/articlesknowledge/coding/312-BS .html] . U.S.
Department of Homeland Security [https://buildsecurityin.us-cert.gov] . May 10, 2013. Plakosh

[Seacord] Robert C. Seacord. Secure Coding in C and C++ [http://www.cert.or g/secur e-coding/publications/books/secur e-coding-
c-c-second-edition.cfm?] . 2nd Edition. Addison-Wesley Professional. April 12, 2013. 978-0321822130. Seacord

Raobert C. Seacord. INT30-C. Ensure that operations on unsigned integers do not
wrap [https://mww.securecoding.cert.org/confluence/display/seccode/| NT32-C.+ Ensur e+ that+ oper ations+ on+ signed
+integers+do+not+result+in+overflow?showComments=false] . Software Engineering Institute, Carnegie Mellon
University [https.//www.cert.org] . August 17, 2014. INT30-C

Robert C. Seacord. INT32-C. Ensure that operations on signed integers do not result
in overflow [https://www.securecoding.cert.org/confluence/display/c/INT32-C.+ Ensuret that+ oper ations+ on+signed
+integers+do+not+result+int+overflow] . Software Engineering Institute, Carnegie Mellon University [https:/
www.cert.org] . August 17, 2014. INT32-C

11

https://safeint.codeplex.com
https://safeint.codeplex.com
https://www.cert.org
https://www.cert.org
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Main_Page
https://en.wikisource.org/wiki/Main_Page
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov
https://buildsecurityin.us-cert.gov
https://buildsecurityin.us-cert.gov
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.cert.org
https://www.cert.org
https://www.cert.org
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.cert.org
https://www.cert.org
https://www.cert.org

12

	A Proposal to Add Safe Integer Types to the Standard Library
	Table of Contents
	1. Motivation
	2. Impact On the Standard
	3. Design Decisions
	4. Existing Implementations
	5. Technical Specifications
	5.1. Type Requirements
	Numeric<T>
	Description
	Notation
	Associated Types
	Valid Expressions
	Header
	Models

	Integer<T>
	Description
	Refinement of
	Valid Expressions
	Header
	Models

	SafeNumeric<T>
	Description
	Refinement of
	Notation
	Valid Expressions
	Complexity Guarantees
	Invariants
	Header
	Models

	6. Types
	6.1. safe<T>
	Description
	Notation
	Template Parameters
	Model of
	Valid Expressions
	Header
	Example of use

	7. Acknowledgements
	8. References

