//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #include #include #include #include #include #include #include #include #include #include /* This examples shows how to use the breadth_first_search() GGCL algorithm, specifically the 3 argument variant of bfs that assumes the graph has a color property (property) stored internally. Two pre-defined visitors are used to record the distance of each vertex from the source vertex, and also to record the parent of each vertex. Any number of visitors can be layered and passed to a GGCL algorithm. The call to vertices(G) returns an STL-compatible container which contains all of the vertices in the graph. In this example we use the vertices container in the STL for_each() function. Sample Output: 0 --> 2 1 --> 1 3 4 2 --> 1 3 4 3 --> 1 4 4 --> 0 1 0 --> 2 1 --> 1 3 4 2 --> 1 3 4 3 --> 1 4 4 --> 0 1 distances: 0 2 1 2 2 parent[0] = 0 parent[1] = 2 parent[2] = 0 parent[3] = 2 parent[4] = 2 */ template struct print_parent { print_parent(const ParentDecorator& p_) : p(p_) { } template void operator()(const Vertex& v) const { std::cout << "parent[" << v << "] = " << p[v] << std::endl; } ParentDecorator p; }; template struct graph_copier : public boost::base_visitor > { typedef Tag event_filter; graph_copier(NewGraph& graph) : new_g(graph) { } template void operator()(Edge e, Graph& g) { boost::add_edge(boost::source(e, g), boost::target(e, g), new_g); } private: NewGraph& new_g; }; template inline graph_copier copy_graph(NewGraph& g, Tag) { return graph_copier(g); } int main(int , char* []) { typedef boost::adjacency_list< boost::mapS, boost::vecS, boost::bidirectionalS, boost::property > > > > Graph; Graph G(5); boost::add_edge(0, 2, G); boost::add_edge(1, 1, G); boost::add_edge(1, 3, G); boost::add_edge(1, 4, G); boost::add_edge(2, 1, G); boost::add_edge(2, 3, G); boost::add_edge(2, 4, G); boost::add_edge(3, 1, G); boost::add_edge(3, 4, G); boost::add_edge(4, 0, G); boost::add_edge(4, 1, G); typedef Graph::vertex_descriptor Vertex; Graph G_copy(5); // Array to store predecessor (parent) of each vertex. This will be // used as a Decorator (actually, its iterator will be). std::vector p(boost::num_vertices(G)); // VC++ version of std::vector has no ::pointer, so // I use ::value_type* instead. typedef std::vector::value_type* Piter; // Array to store distances from the source to each vertex . We use // a built-in array here just for variety. This will also be used as // a Decorator. boost::graph_traits::vertices_size_type d[5]; std::fill_n(d, 5, 0); // The source vertex Vertex s = *(boost::vertices(G).first); p[s] = s; boost::breadth_first_search (G, s, boost::visitor(boost::make_bfs_visitor (std::make_pair(boost::record_distances(d, boost::on_tree_edge()), std::make_pair (boost::record_predecessors(&p[0], boost::on_tree_edge()), copy_graph(G_copy, boost::on_examine_edge())))) )); boost::print_graph(G); boost::print_graph(G_copy); if (boost::num_vertices(G) < 11) { std::cout << "distances: "; #ifdef BOOST_OLD_STREAM_ITERATORS std::copy(d, d + 5, std::ostream_iterator(std::cout, " ")); #else std::copy(d, d + 5, std::ostream_iterator(std::cout, " ")); #endif std::cout << std::endl; std::for_each(boost::vertices(G).first, boost::vertices(G).second, print_parent(&p[0])); } return 0; }