/*============================================================================= Copyright (c) 2001-2011 Joel de Guzman Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ==============================================================================*/ #include "measure.hpp" #define FUSION_MAX_LIST_SIZE 30 #define FUSION_MAX_VECTOR_SIZE 30 #include #include #include #include #include #include #include #include #ifdef _MSC_VER // inline aggressively # pragma inline_recursion(on) // turn on inline recursion # pragma inline_depth(255) // max inline depth #endif // About the tests: // // The tests below compare various fusion sequences to see how abstraction // affects prformance. // // We have 3 sequence sizes for each fusion sequence we're going to test. // // small = 3 elements // medium = 10 elements // big = 30 elements // // The sequences are initialized with values 0..N-1 from numeric strings // parsed by boost::lexical_cast to make sure that the compiler is not // optimizing by replacing the computation with constant results computed // at compile time. // // These sequences will be subjected to our accumulator which calls // fusion::accumulate: // // this->sum += boost::fusion::accumulate(seq, 0, poly_add()); // // where poly_add simply sums the current value with the content of // the sequence element. This accumulator will be called many times // through the "hammer" test (see measure.hpp). // // The tests are compared against a base using a plain_accumulator // which does a simple addition: // // this->sum += x; namespace { struct poly_add { template struct result; template struct result : boost::remove_reference {}; template Lhs operator()(const Lhs& lhs, const Rhs& rhs) const { return lhs + rhs; } }; // Our Accumulator function template struct accumulator { accumulator() : sum() {} template void operator()(Sequence const& seq) { this->sum += boost::fusion::accumulate(seq, 0, poly_add()); } T sum; }; // Plain Accumulator function template struct plain_accumulator { plain_accumulator() : sum() {} template void operator()(X const& x) { this->sum += x; } T sum; }; template void check(T const& seq, char const* info) { test::measure >(seq, 1); std::cout << info << test::live_code << std::endl; } template void measure(T const& seq, char const* info, long const repeats, double base) { double t = test::measure >(seq, repeats); std::cout << info << t << " (" << int((t/base)*100) << "%)" << std::endl; } template void test_assembler(T const& seq) { test::live_code = boost::fusion::accumulate(seq, 0, poly_add()); } } // We'll initialize the sequences from numeric strings that // pass through boost::lexical_cast to make sure that the // compiler is not optimizing by replacing the computation // with constant results computed at compile time. #define INIT(z, n, text) boost::lexical_cast(BOOST_PP_STRINGIZE(n)) int main() { using namespace boost::fusion; std::cout.setf(std::ios::scientific); vector< int, int, int > vsmall(BOOST_PP_ENUM(3, INIT, _)); list< int, int, int > lsmall(BOOST_PP_ENUM(3, INIT, _)); vector< int, int, int, int, int, int, int, int, int, int > vmedium(BOOST_PP_ENUM(10, INIT, _)); list< int, int, int, int, int, int, int, int, int, int > lmedium(BOOST_PP_ENUM(10, INIT, _)); vector< int, int, int, int, int, int, int, int, int, int , int, int, int, int, int, int, int, int, int, int , int, int, int, int, int, int, int, int, int, int > vbig(BOOST_PP_ENUM(30, INIT, _)); list< int, int, int, int, int, int, int, int, int, int , int, int, int, int, int, int, int, int, int, int , int, int, int, int, int, int, int, int, int, int > lbig(BOOST_PP_ENUM(30, INIT, _)); // first decide how many repetitions to measure long repeats = 100; double measured = 0; while (measured < 2.0 && repeats <= 10000000) { repeats *= 10; boost::timer time; test::hammer >(0, repeats); test::hammer >(vsmall, repeats); test::hammer >(lsmall, repeats); test::hammer >(vmedium, repeats); test::hammer >(lmedium, repeats); test::hammer >(vbig, repeats); test::hammer >(lbig, repeats); measured = time.elapsed(); } test::measure >(1, 1); std::cout << "base accumulated result: " << test::live_code << std::endl; double base_time = test::measure >(1, repeats); std::cout << "base time: " << base_time; std::cout << std::endl << "-------------------------------------------------------------------" << std::endl; check(vsmall, "small vector accumulated result: "); check(lsmall, "small list accumulated result: "); check(vmedium, "medium vector accumulated result: "); check(lmedium, "medium list accumulated result: "); check(vbig, "big vector accumulated result: "); check(lbig, "big list accumulated result: "); std::cout << "-------------------------------------------------------------------" << std::endl; measure(vsmall, "small vector time: ", repeats, base_time); measure(lsmall, "small list time: ", repeats, base_time); measure(vmedium, "medium vector time: ", repeats, base_time); measure(lmedium, "medium list time: ", repeats, base_time); measure(vbig, "big vector time: ", repeats, base_time); measure(lbig, "big list time: ", repeats, base_time); std::cout << "-------------------------------------------------------------------" << std::endl; // Let's see how this looks in assembler test_assembler(vmedium); // This is ultimately responsible for preventing all the test code // from being optimized away. Change this to return 0 and you // unplug the whole test's life support system. return test::live_code != 0; }