// Copyright 2002 Rensselaer Polytechnic Institute // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Authors: Lauren Foutz // Scott Hill #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace boost; template inline const T& my_min(const T& x, const T& y) { return x < y? x : y; } template bool acceptance_test(Graph& g, int vec, int e) { boost::minstd_rand ran(vec); { typename boost::property_map::type index = boost::get(boost::vertex_name, g); typename boost::graph_traits::vertex_iterator firstv, lastv, firstv2, lastv2; int x = 0; for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ boost::put(index, *firstv, x); x++; } for(int i = 0; i < e; i++){ boost::add_edge(index[ran() % vec], index[ran() % vec], g); } typename boost::graph_traits::edge_iterator first, last; typename boost::property_map::type local_edge_map = boost::get(boost::edge_weight, g); for(boost::tie(first, last) = boost::edges(g); first != last; first++){ if (ran() % vec != 0){ boost::put(local_edge_map, *first, ran() % 100); } else { boost::put(local_edge_map, *first, 0 - (ran() % 100)); } } int int_inf = std::numeric_limits::max BOOST_PREVENT_MACRO_SUBSTITUTION(); typedef typename boost::graph_traits::vertex_descriptor vertex_des; std::map matrixRow; std::map > matrix; typedef typename boost::property_map::type distance_type; distance_type distance_row = boost::get(boost::vertex_distance, g); for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ boost::put(distance_row, *firstv, int_inf); matrixRow[*firstv] = int_inf; } for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ matrix[*firstv] = matrixRow; } for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ matrix[*firstv][*firstv] = 0; } std::map > matrix3(matrix); std::map > matrix4(matrix); for(boost::tie(first, last) = boost::edges(g); first != last; first++){ if (matrix[boost::source(*first, g)][boost::target(*first, g)] != int_inf) { matrix[boost::source(*first, g)][boost::target(*first, g)] = my_min (boost::get(local_edge_map, *first), matrix[boost::source(*first, g)][boost::target(*first, g)]); } else { matrix[boost::source(*first, g)][boost::target(*first, g)] = boost::get(local_edge_map, *first); } } bool is_undirected = boost::is_same::directed_category, boost::undirected_tag>::value; if (is_undirected){ for(boost::tie(first, last) = boost::edges(g); first != last; first++){ if (matrix[boost::target(*first, g)][boost::source(*first, g)] != int_inf) { matrix[boost::target(*first, g)][boost::source(*first, g)] = my_min (boost::get(local_edge_map, *first), matrix[boost::target(*first, g)][boost::source(*first, g)]); } else { matrix[boost::target(*first, g)][boost::source(*first, g)] = boost::get(local_edge_map, *first); } } } bool bellman, floyd1, floyd2, floyd3; floyd1 = boost::floyd_warshall_initialized_all_pairs_shortest_paths (g, matrix, weight_map(boost::get(boost::edge_weight, g)). distance_inf(int_inf). distance_zero(0)); floyd2 = boost::floyd_warshall_all_pairs_shortest_paths (g, matrix3, weight_map(local_edge_map). distance_inf(int_inf). distance_zero(0)); floyd3 = boost::floyd_warshall_all_pairs_shortest_paths(g, matrix4); boost::dummy_property_map dummy_map; std::map > matrix2; for(boost::tie(firstv, lastv) = vertices(g); firstv != lastv; firstv++){ boost::put(distance_row, *firstv, 0); bellman = boost::bellman_ford_shortest_paths (g, vec, weight_map(boost::get(boost::edge_weight, g)). distance_map(boost::get(boost::vertex_distance, g)). predecessor_map(dummy_map)); distance_row = boost::get(boost::vertex_distance, g); for(boost::tie(firstv2, lastv2) = vertices(g); firstv2 != lastv2; firstv2++){ matrix2[*firstv][*firstv2] = boost::get(distance_row, *firstv2); boost::put(distance_row, *firstv2, int_inf); } if(bellman == false){ break; } } if (bellman != floyd1 || bellman != floyd2 || bellman != floyd3){ std::cout << "A negative cycle was detected in one algorithm but not the others. " << std::endl; return false; } else if (bellman == false && floyd1 == false && floyd2 == false && floyd3 == false){ return true; } else { typename boost::graph_traits::vertex_iterator first1, first2, last1, last2; for (boost::tie(first1, last1) = boost::vertices(g); first1 != last1; first1++){ for (boost::tie(first2, last2) = boost::vertices(g); first2 != last2; first2++){ if (matrix2[*first1][*first2] != matrix[*first1][*first2]){ std::cout << "Algorithms do not match at matrix point " << index[*first1] << " " << index[*first2] << " Bellman results: " << matrix2[*first1][*first2] << " floyd 1 results " << matrix[*first1][*first2] << std::endl; return false; } if (matrix2[*first1][*first2] != matrix3[*first1][*first2]){ std::cout << "Algorithms do not match at matrix point " << index[*first1] << " " << index[*first2] << " Bellman results: " << matrix2[*first1][*first2] << " floyd 2 results " << matrix3[*first1][*first2] << std::endl; return false; } if (matrix2[*first1][*first2] != matrix4[*first1][*first2]){ std::cout << "Algorithms do not match at matrix point " << index[*first1] << " " << index[*first2] << " Bellman results: " << matrix2[*first1][*first2] << " floyd 3 results " << matrix4[*first1][*first2] << std::endl; return false; } } } } } return true; } template bool acceptance_test2(Graph& g, int vec, int e) { boost::minstd_rand ran(vec); { typename boost::property_map::type index = boost::get(boost::vertex_name, g); typename boost::graph_traits::vertex_iterator firstv, lastv, firstv2, lastv2; int x = 0; for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ boost::put(index, *firstv, x); x++; } boost::generate_random_graph(g, vec, e, ran, true); typename boost::graph_traits::edge_iterator first, last; typename boost::property_map::type local_edge_map = boost::get(boost::edge_weight, g); for(boost::tie(first, last) = boost::edges(g); first != last; first++){ if (ran() % vec != 0){ boost::put(local_edge_map, *first, ran() % 100); } else { boost::put(local_edge_map, *first, 0 - (ran() % 100)); } } int int_inf = std::numeric_limits::max BOOST_PREVENT_MACRO_SUBSTITUTION(); typedef typename boost::graph_traits::vertex_descriptor vertex_des; std::map matrixRow; std::map > matrix; typedef typename boost::property_map::type distance_type; distance_type distance_row = boost::get(boost::vertex_distance, g); for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ boost::put(distance_row, *firstv, int_inf); matrixRow[*firstv] = int_inf; } for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ matrix[*firstv] = matrixRow; } for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv; firstv++){ matrix[*firstv][*firstv] = 0; } std::map > matrix3(matrix); std::map > matrix4(matrix); for(boost::tie(first, last) = boost::edges(g); first != last; first++){ if (matrix[boost::source(*first, g)][boost::target(*first, g)] != int_inf) { matrix[boost::source(*first, g)][boost::target(*first, g)] = my_min (boost::get(local_edge_map, *first), matrix[boost::source(*first, g)][boost::target(*first, g)]); } else { matrix[boost::source(*first, g)][boost::target(*first, g)] = boost::get(local_edge_map, *first); } } bool is_undirected = boost::is_same::directed_category, boost::undirected_tag>::value; if (is_undirected){ for(boost::tie(first, last) = boost::edges(g); first != last; first++){ if (matrix[boost::target(*first, g)][boost::source(*first, g)] != int_inf){ matrix[boost::target(*first, g)][boost::source(*first, g)] = my_min (boost::get(local_edge_map, *first), matrix[boost::target(*first, g)][boost::source(*first, g)]); } else { matrix[boost::target(*first, g)][boost::source(*first, g)] = boost::get(local_edge_map, *first); } } } bool bellman, floyd1, floyd2, floyd3; floyd1 = boost::floyd_warshall_initialized_all_pairs_shortest_paths (g, matrix, weight_map(boost::get(boost::edge_weight, g)). distance_inf(int_inf). distance_zero(0)); floyd2 = boost::floyd_warshall_all_pairs_shortest_paths (g, matrix3, weight_map(local_edge_map). distance_inf(int_inf). distance_zero(0)); floyd3 = boost::floyd_warshall_all_pairs_shortest_paths(g, matrix4); boost::dummy_property_map dummy_map; std::map > matrix2; for(boost::tie(firstv, lastv) = vertices(g); firstv != lastv; firstv++){ boost::put(distance_row, *firstv, 0); bellman = boost::bellman_ford_shortest_paths (g, vec, weight_map(boost::get(boost::edge_weight, g)). distance_map(boost::get(boost::vertex_distance, g)). predecessor_map(dummy_map)); distance_row = boost::get(boost::vertex_distance, g); for(boost::tie(firstv2, lastv2) = vertices(g); firstv2 != lastv2; firstv2++){ matrix2[*firstv][*firstv2] = boost::get(distance_row, *firstv2); boost::put(distance_row, *firstv2, int_inf); } if(bellman == false){ break; } } if (bellman != floyd1 || bellman != floyd2 || bellman != floyd3){ std::cout << "A negative cycle was detected in one algorithm but not the others. " << std::endl; return false; } else if (bellman == false && floyd1 == false && floyd2 == false && floyd3 == false){ return true; } else { typename boost::graph_traits::vertex_iterator first1, first2, last1, last2; for (boost::tie(first1, last1) = boost::vertices(g); first1 != last1; first1++){ for (boost::tie(first2, last2) = boost::vertices(g); first2 != last2; first2++){ if (matrix2[*first1][*first2] != matrix[*first1][*first2]){ std::cout << "Algorithms do not match at matrix point " << index[*first1] << " " << index[*first2] << " Bellman results: " << matrix2[*first1][*first2] << " floyd 1 results " << matrix[*first1][*first2] << std::endl; return false; } if (matrix2[*first1][*first2] != matrix3[*first1][*first2]){ std::cout << "Algorithms do not match at matrix point " << index[*first1] << " " << index[*first2] << " Bellman results: " << matrix2[*first1][*first2] << " floyd 2 results " << matrix3[*first1][*first2] << std::endl; return false; } if (matrix2[*first1][*first2] != matrix4[*first1][*first2]){ std::cout << "Algorithms do not match at matrix point " << index[*first1] << " " << index[*first2] << " Bellman results: " << matrix2[*first1][*first2] << " floyd 3 results " << matrix4[*first1][*first2] << std::endl; return false; } } } } } return true; } int test_main(int, char*[]) { typedef boost::adjacency_list > , boost::property > Digraph; Digraph adjlist_digraph; BOOST_CHECK(acceptance_test2(adjlist_digraph, 100, 2000)); typedef boost::adjacency_matrix > , boost::property > Graph; Graph matrix_graph(100); BOOST_CHECK(acceptance_test(matrix_graph, 100, 2000)); return 0; }