//======================================================================= // Copyright 2009 Trustees of Indiana University. // Authors: Michael Hansen, Andrew Lumsdaine // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #include #include #include #include #include #include #include #include using namespace boost; // Function that prints a vertex to std::cout template void print_vertex(Vertex vertex_to_print) { std::cout << "("; for (std::size_t dimension_index = 0; dimension_index < vertex_to_print.size(); ++dimension_index) { std::cout << vertex_to_print[dimension_index]; if (dimension_index != (vertex_to_print.size() - 1)) { std::cout << ", "; } } std::cout << ")"; } template void do_test(minstd_rand& generator) { typedef grid_graph Graph; typedef typename graph_traits::vertices_size_type vertices_size_type; typedef typename graph_traits::edges_size_type edges_size_type; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef typename graph_traits::edge_descriptor edge_descriptor; std::cout << "Dimensions: " << Dims << ", lengths: "; // Randomly generate the dimension lengths (3-10) and wrapping boost::array lengths; boost::array wrapped; for (unsigned int dimension_index = 0; dimension_index < Dims; ++dimension_index) { lengths[dimension_index] = 3 + (generator() % 8); wrapped[dimension_index] = ((generator() % 2) == 0); std::cout << lengths[dimension_index] << (wrapped[dimension_index] ? " [W]" : " [U]") << ", "; } std::cout << std::endl; Graph graph(lengths, wrapped); // Verify dimension lengths and wrapping for (unsigned int dimension_index = 0; dimension_index < Dims; ++dimension_index) { BOOST_REQUIRE(graph.length(dimension_index) == lengths[dimension_index]); BOOST_REQUIRE(graph.wrapped(dimension_index) == wrapped[dimension_index]); } // Verify matching indices for (vertices_size_type vertex_index = 0; vertex_index < num_vertices(graph); ++vertex_index) { BOOST_REQUIRE(get(boost::vertex_index, graph, vertex(vertex_index, graph)) == vertex_index); } for (edges_size_type edge_index = 0; edge_index < num_edges(graph); ++edge_index) { edge_descriptor current_edge = edge_at(edge_index, graph); BOOST_REQUIRE(get(boost::edge_index, graph, current_edge) == edge_index); } // Verify all vertices are within bounds vertices_size_type vertex_count = 0; BOOST_FOREACH(vertex_descriptor current_vertex, vertices(graph)) { vertices_size_type current_index = get(boost::vertex_index, graph, current_vertex); for (unsigned int dimension_index = 0; dimension_index < Dims; ++dimension_index) { BOOST_REQUIRE(/*(current_vertex[dimension_index] >= 0) && */ // Always true (current_vertex[dimension_index] < lengths[dimension_index])); } // Verify out-edges of this vertex edges_size_type out_edge_count = 0; std::set target_vertices; BOOST_FOREACH(edge_descriptor out_edge, out_edges(current_vertex, graph)) { target_vertices.insert (get(boost::vertex_index, graph, target(out_edge, graph))); ++out_edge_count; } BOOST_REQUIRE(out_edge_count == out_degree(current_vertex, graph)); // Verify in-edges of this vertex edges_size_type in_edge_count = 0; BOOST_FOREACH(edge_descriptor in_edge, in_edges(current_vertex, graph)) { BOOST_REQUIRE(target_vertices.count (get(boost::vertex_index, graph, source(in_edge, graph))) > 0); ++in_edge_count; } BOOST_REQUIRE(in_edge_count == in_degree(current_vertex, graph)); // The number of out-edges and in-edges should be the same BOOST_REQUIRE(degree(current_vertex, graph) == out_degree(current_vertex, graph) + in_degree(current_vertex, graph)); // Verify adjacent vertices to this vertex vertices_size_type adjacent_count = 0; BOOST_FOREACH(vertex_descriptor adjacent_vertex, adjacent_vertices(current_vertex, graph)) { BOOST_REQUIRE(target_vertices.count (get(boost::vertex_index, graph, adjacent_vertex)) > 0); ++adjacent_count; } BOOST_REQUIRE(adjacent_count == out_degree(current_vertex, graph)); // Verify that this vertex is not listed as connected to any // vertices outside of its adjacent vertices. BOOST_FOREACH(vertex_descriptor unconnected_vertex, vertices(graph)) { vertices_size_type unconnected_index = get(boost::vertex_index, graph, unconnected_vertex); if ((unconnected_index == current_index) || (target_vertices.count(unconnected_index) > 0)) { continue; } BOOST_REQUIRE(!edge(current_vertex, unconnected_vertex, graph).second); BOOST_REQUIRE(!edge(unconnected_vertex, current_vertex, graph).second); } ++vertex_count; } BOOST_REQUIRE(vertex_count == num_vertices(graph)); // Verify all edges are within bounds edges_size_type edge_count = 0; BOOST_FOREACH(edge_descriptor current_edge, edges(graph)) { vertices_size_type source_index = get(boost::vertex_index, graph, source(current_edge, graph)); vertices_size_type target_index = get(boost::vertex_index, graph, target(current_edge, graph)); BOOST_REQUIRE(source_index != target_index); BOOST_REQUIRE(/* (source_index >= 0) : always true && */ (source_index < num_vertices(graph))); BOOST_REQUIRE(/* (target_index >= 0) : always true && */ (target_index < num_vertices(graph))); // Verify that the edge is listed as existing in both directions BOOST_REQUIRE(edge(source(current_edge, graph), target(current_edge, graph), graph).second); BOOST_REQUIRE(edge(target(current_edge, graph), source(current_edge, graph), graph).second); ++edge_count; } BOOST_REQUIRE(edge_count == num_edges(graph)); } int test_main(int argc, char* argv[]) { std::size_t random_seed = time(0); if (argc > 1) { random_seed = lexical_cast(argv[1]); } minstd_rand generator(random_seed); do_test<0>(generator); do_test<1>(generator); do_test<2>(generator); do_test<3>(generator); do_test<4>(generator); return (0); }