//======================================================================= // Copyright 2009 Trustees of Indiana University. // Authors: Michael Hansen // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include bool was_common_subgraph_found = false, output_graphs = false; std::vector simple_subgraph_list; // Callback that compares incoming graphs to the supplied common // subgraph. template struct test_callback { test_callback(Graph& common_subgraph, const Graph& graph1, const Graph& graph2) : m_graph1(graph1), m_graph2(graph2), m_common_subgraph(common_subgraph) { } template bool operator()(CorrespondenceMapFirstToSecond correspondence_map_1_to_2, CorrespondenceMapSecondToFirst correspondence_map_2_to_1, typename boost::graph_traits::vertices_size_type subgraph_size) { typedef typename boost::graph_traits::vertex_descriptor Vertex; typedef typename boost::graph_traits::edge_descriptor Edge; typedef std::pair EdgeInfo; typedef typename boost::property_map::type VertexIndexMap; typedef typename boost::property_map::type VertexNameMap; typedef typename boost::property_map::type EdgeNameMap; if (subgraph_size != num_vertices(m_common_subgraph)) { return (true); } // Fill membership maps for both graphs typedef boost::shared_array_property_map MembershipMap; MembershipMap membership_map1(num_vertices(m_graph1), get(boost::vertex_index, m_graph1)); MembershipMap membership_map2(num_vertices(m_graph2), get(boost::vertex_index, m_graph2)); boost::fill_membership_map(m_graph1, correspondence_map_1_to_2, membership_map1); boost::fill_membership_map(m_graph2, correspondence_map_2_to_1, membership_map2); // Generate filtered graphs using membership maps typedef typename boost::membership_filtered_graph_traits::graph_type MembershipFilteredGraph; MembershipFilteredGraph subgraph1 = boost::make_membership_filtered_graph(m_graph1, membership_map1); MembershipFilteredGraph subgraph2 = boost::make_membership_filtered_graph(m_graph2, membership_map2); VertexIndexMap vindex_map1 = get(boost::vertex_index, subgraph1); VertexIndexMap vindex_map2 = get(boost::vertex_index, subgraph2); VertexNameMap vname_map_common = get(boost::vertex_name, m_common_subgraph); VertexNameMap vname_map1 = get(boost::vertex_name, subgraph1); VertexNameMap vname_map2 = get(boost::vertex_name, subgraph2); EdgeNameMap ename_map_common = get(boost::edge_name, m_common_subgraph); EdgeNameMap ename_map1 = get(boost::edge_name, subgraph1); EdgeNameMap ename_map2 = get(boost::edge_name, subgraph2); // Verify that subgraph1 matches the supplied common subgraph BGL_FORALL_VERTICES_T(vertex1, subgraph1, MembershipFilteredGraph) { Vertex vertex_common = vertex(get(vindex_map1, vertex1), m_common_subgraph); // Match vertex names if (get(vname_map_common, vertex_common) != get(vname_map1, vertex1)) { // Keep looking return (true); } BGL_FORALL_VERTICES_T(vertex1_2, subgraph1, MembershipFilteredGraph) { Vertex vertex_common2 = vertex(get(vindex_map1, vertex1_2), m_common_subgraph); EdgeInfo edge_common = edge(vertex_common, vertex_common2, m_common_subgraph); EdgeInfo edge1 = edge(vertex1, vertex1_2, subgraph1); if ((edge_common.second != edge1.second) || ((edge_common.second && edge1.second) && (get(ename_map_common, edge_common.first) != get(ename_map1, edge1.first)))) { // Keep looking return (true); } } } // BGL_FORALL_VERTICES_T (subgraph1) // Verify that subgraph2 matches the supplied common subgraph BGL_FORALL_VERTICES_T(vertex2, subgraph2, MembershipFilteredGraph) { Vertex vertex_common = vertex(get(vindex_map2, vertex2), m_common_subgraph); // Match vertex names if (get(vname_map_common, vertex_common) != get(vname_map2, vertex2)) { // Keep looking return (true); } BGL_FORALL_VERTICES_T(vertex2_2, subgraph2, MembershipFilteredGraph) { Vertex vertex_common2 = vertex(get(vindex_map2, vertex2_2), m_common_subgraph); EdgeInfo edge_common = edge(vertex_common, vertex_common2, m_common_subgraph); EdgeInfo edge2 = edge(vertex2, vertex2_2, subgraph2); if ((edge_common.second != edge2.second) || ((edge_common.second && edge2.second) && (get(ename_map_common, edge_common.first) != get(ename_map2, edge2.first)))) { // Keep looking return (true); } } } // BGL_FORALL_VERTICES_T (subgraph2) // Check isomorphism just to be thorough if (verify_isomorphism(subgraph1, subgraph2, correspondence_map_1_to_2)) { was_common_subgraph_found = true; if (output_graphs) { std::fstream file_subgraph("found_common_subgraph.dot", std::fstream::out); write_graphviz(file_subgraph, subgraph1, make_label_writer(get(boost::vertex_name, m_graph1)), make_label_writer(get(boost::edge_name, m_graph1))); } // Stop iterating return (false); } // Keep looking return (true); } private: const Graph& m_graph1, m_graph2; Graph& m_common_subgraph; }; template struct simple_callback { simple_callback(const Graph& graph1) : m_graph1(graph1) { } template bool operator()(CorrespondenceMapFirstToSecond correspondence_map_1_to_2, CorrespondenceMapSecondToFirst /*correspondence_map_2_to_1*/, typename boost::graph_traits::vertices_size_type /*subgraph_size*/) { typedef typename boost::graph_traits::vertex_descriptor Vertex; std::stringstream subgraph_string; BGL_FORALL_VERTICES_T(vertex1, m_graph1, Graph) { Vertex vertex2 = get(correspondence_map_1_to_2, vertex1); if (vertex2 != boost::graph_traits::null_vertex()) { subgraph_string << vertex1 << "," << vertex2 << " "; } } simple_subgraph_list.push_back(subgraph_string.str()); return (true); } private: const Graph& m_graph1; }; template void add_random_vertices(Graph& graph, RandomNumberGenerator& generator, int vertices_to_create, int max_edges_per_vertex, VertexNameMap vname_map, EdgeNameMap ename_map) { typedef typename boost::graph_traits::vertex_descriptor Vertex; typedef std::vector VertexList; VertexList new_vertices; for (int v_index = 0; v_index < vertices_to_create; ++v_index) { Vertex new_vertex = add_vertex(graph); put(vname_map, new_vertex, generator()); new_vertices.push_back(new_vertex); } // Add edges for every new vertex. Care is taken to avoid parallel // edges. for (typename VertexList::const_iterator v_iter = new_vertices.begin(); v_iter != new_vertices.end(); ++v_iter) { Vertex source_vertex = *v_iter; int edges_for_vertex = (std::min)((int)(generator() % max_edges_per_vertex) + 1, (int)num_vertices(graph)); while (edges_for_vertex > 0) { Vertex target_vertex = random_vertex(graph, generator); if (source_vertex == target_vertex) { continue; } BGL_FORALL_OUTEDGES_T(source_vertex, edge, graph, Graph) { if (target(edge, graph) == target_vertex) { continue; } } put(ename_map, add_edge(source_vertex, target_vertex, graph).first, generator()); edges_for_vertex--; } } } bool has_subgraph_string(std::string set_string) { return (std::find(simple_subgraph_list.begin(), simple_subgraph_list.end(), set_string) != simple_subgraph_list.end()); } int test_main (int argc, char *argv[]) { int vertices_to_create = 10; int max_edges_per_vertex = 2; std::size_t random_seed = time(0); if (argc > 1) { vertices_to_create = boost::lexical_cast(argv[1]); } if (argc > 2) { max_edges_per_vertex = boost::lexical_cast(argv[2]); } if (argc > 3) { output_graphs = boost::lexical_cast(argv[3]); } if (argc > 4) { random_seed = boost::lexical_cast(argv[4]); } boost::minstd_rand generator(random_seed); // Using a vecS graph here so that we don't have to mess around with // a vertex index map; it will be implicit. typedef boost::adjacency_list >, boost::property > Graph; typedef boost::property_map::type VertexNameMap; typedef boost::property_map::type EdgeNameMap; // Generate a random common subgraph and then add random vertices // and edges to the two parent graphs. Graph common_subgraph, graph1, graph2; VertexNameMap vname_map_common = get(boost::vertex_name, common_subgraph); VertexNameMap vname_map1 = get(boost::vertex_name, graph1); VertexNameMap vname_map2 = get(boost::vertex_name, graph2); EdgeNameMap ename_map_common = get(boost::edge_name, common_subgraph); EdgeNameMap ename_map1 = get(boost::edge_name, graph1); EdgeNameMap ename_map2 = get(boost::edge_name, graph2); for (int vindex = 0; vindex < vertices_to_create; ++vindex) { put(vname_map_common, add_vertex(common_subgraph), generator()); } BGL_FORALL_VERTICES(source_vertex, common_subgraph, Graph) { BGL_FORALL_VERTICES(target_vertex, common_subgraph, Graph) { if (source_vertex != target_vertex) { put(ename_map_common, add_edge(source_vertex, target_vertex, common_subgraph).first, generator()); } } } boost::randomize_property(common_subgraph, generator); boost::randomize_property(common_subgraph, generator); boost::copy_graph(common_subgraph, graph1); boost::copy_graph(common_subgraph, graph2); // Randomly add vertices and edges to graph1 and graph2. add_random_vertices(graph1, generator, vertices_to_create, max_edges_per_vertex, vname_map1, ename_map1); add_random_vertices(graph2, generator, vertices_to_create, max_edges_per_vertex, vname_map2, ename_map2); if (output_graphs) { std::fstream file_graph1("graph1.dot", std::fstream::out), file_graph2("graph2.dot", std::fstream::out), file_common_subgraph("expected_common_subgraph.dot", std::fstream::out); write_graphviz(file_graph1, graph1, make_label_writer(vname_map1), make_label_writer(ename_map1)); write_graphviz(file_graph2, graph2, make_label_writer(vname_map2), make_label_writer(ename_map2)); write_graphviz(file_common_subgraph, common_subgraph, make_label_writer(get(boost::vertex_name, common_subgraph)), make_label_writer(get(boost::edge_name, common_subgraph))); } std::cout << "Searching for common subgraph of size " << num_vertices(common_subgraph) << std::endl; test_callback user_callback(common_subgraph, graph1, graph2); boost::mcgregor_common_subgraphs(graph1, graph2, true, user_callback, boost::edges_equivalent(boost::make_property_map_equivalent(ename_map1, ename_map2)). vertices_equivalent(boost::make_property_map_equivalent(vname_map1, vname_map2))); BOOST_CHECK(was_common_subgraph_found); // Test maximum and unique variants on known graphs Graph graph_simple1, graph_simple2; simple_callback user_callback_simple(graph_simple1); VertexNameMap vname_map_simple1 = get(boost::vertex_name, graph_simple1); VertexNameMap vname_map_simple2 = get(boost::vertex_name, graph_simple2); put(vname_map_simple1, add_vertex(graph_simple1), 1); put(vname_map_simple1, add_vertex(graph_simple1), 2); put(vname_map_simple1, add_vertex(graph_simple1), 3); add_edge(0, 1, graph_simple1); add_edge(0, 2, graph_simple1); add_edge(1, 2, graph_simple1); put(vname_map_simple2, add_vertex(graph_simple2), 1); put(vname_map_simple2, add_vertex(graph_simple2), 2); put(vname_map_simple2, add_vertex(graph_simple2), 3); put(vname_map_simple2, add_vertex(graph_simple2), 4); add_edge(0, 1, graph_simple2); add_edge(0, 2, graph_simple2); add_edge(1, 2, graph_simple2); add_edge(1, 3, graph_simple2); // Unique subgraphs std::cout << "Searching for unique subgraphs" << std::endl; boost::mcgregor_common_subgraphs_unique(graph_simple1, graph_simple2, true, user_callback_simple, boost::vertices_equivalent(boost::make_property_map_equivalent(vname_map_simple1, vname_map_simple2))); BOOST_CHECK(has_subgraph_string("0,0 1,1 ")); BOOST_CHECK(has_subgraph_string("0,0 1,1 2,2 ")); BOOST_CHECK(has_subgraph_string("0,0 2,2 ")); BOOST_CHECK(has_subgraph_string("1,1 2,2 ")); if (output_graphs) { std::copy(simple_subgraph_list.begin(), simple_subgraph_list.end(), std::ostream_iterator(std::cout, "\n")); std::cout << std::endl; } simple_subgraph_list.clear(); // Maximum subgraphs std::cout << "Searching for maximum subgraphs" << std::endl; boost::mcgregor_common_subgraphs_maximum(graph_simple1, graph_simple2, true, user_callback_simple, boost::vertices_equivalent(boost::make_property_map_equivalent(vname_map_simple1, vname_map_simple2))); BOOST_CHECK(has_subgraph_string("0,0 1,1 2,2 ")); if (output_graphs) { std::copy(simple_subgraph_list.begin(), simple_subgraph_list.end(), std::ostream_iterator(std::cout, "\n")); std::cout << std::endl; } simple_subgraph_list.clear(); // Maximum, unique subgraphs std::cout << "Searching for maximum unique subgraphs" << std::endl; boost::mcgregor_common_subgraphs_maximum_unique(graph_simple1, graph_simple2, true, user_callback_simple, boost::vertices_equivalent(boost::make_property_map_equivalent(vname_map_simple1, vname_map_simple2))); BOOST_CHECK(simple_subgraph_list.size() == 1); BOOST_CHECK(has_subgraph_string("0,0 1,1 2,2 ")); if (output_graphs) { std::copy(simple_subgraph_list.begin(), simple_subgraph_list.end(), std::ostream_iterator(std::cout, "\n")); std::cout << std::endl; } return 0; }