///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2013. // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #include #include #include "itestvalue.hpp" #include "bptr_value.hpp" #include "smart_ptr.hpp" #include "common_functors.hpp" #include #include #include "test_macros.hpp" #include "test_container.hpp" #include using namespace boost::intrusive; template struct hooks { typedef slist_base_hook > base_hook_type; typedef slist_base_hook< link_mode , void_pointer, tag > auto_base_hook_type; typedef slist_member_hook, tag > member_hook_type; typedef slist_member_hook< link_mode , void_pointer > auto_member_hook_type; typedef nonhook_node_member< slist_node_traits< VoidPointer >, circular_slist_algorithms > nonhook_node_member_type; }; template < typename ListType, typename ValueContainer > struct test_slist { typedef ListType list_type; typedef typename list_type::value_traits value_traits; typedef typename value_traits::value_type value_type; typedef typename list_type::node_algorithms node_algorithms; static void test_all(ValueContainer&); static void test_front(ValueContainer&); static void test_back(ValueContainer&, detail::true_type); static void test_back(ValueContainer&, detail::false_type) {} static void test_sort(ValueContainer&); static void test_merge(ValueContainer&); static void test_remove_unique(ValueContainer&); static void test_insert(ValueContainer&); static void test_shift(ValueContainer&); static void test_swap(ValueContainer&); static void test_slow_insert(ValueContainer&); static void test_clone(ValueContainer&); static void test_container_from_end(ValueContainer&, detail::true_type); static void test_container_from_end(ValueContainer&, detail::false_type) {} }; template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_all (ValueContainer& values) { { list_type list(values.begin(), values.end()); test::test_container(list); list.clear(); list.insert(list.end(), values.begin(), values.end()); test::test_sequence_container(list, values); } { list_type list(values.begin(), values.end()); test::test_iterator_forward(list); } test_front(values); test_back(values, detail::bool_< list_type::cache_last >()); test_sort(values); test_merge (values); test_remove_unique(values); test_insert(values); test_shift(values); test_slow_insert (values); test_swap(values); test_clone(values); test_container_from_end(values, detail::bool_< !list_type::linear && list_type::has_container_from_iterator >()); } //test: push_front, pop_front, front, size, empty: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_front(ValueContainer& values) { list_type testlist; BOOST_TEST (testlist.empty()); testlist.push_front (values[0]); BOOST_TEST (testlist.size() == 1); BOOST_TEST (&testlist.front() == &values[0]); testlist.push_front (values[1]); BOOST_TEST (testlist.size() == 2); BOOST_TEST (&testlist.front() == &values[1]); testlist.pop_front(); BOOST_TEST (testlist.size() == 1); BOOST_TEST (&testlist.front() == &values[0]); testlist.pop_front(); BOOST_TEST (testlist.empty()); } //test: push_front, pop_front, front, size, empty: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_back(ValueContainer& values, detail::true_type) { list_type testlist; BOOST_TEST (testlist.empty()); testlist.push_back (values[0]); BOOST_TEST (testlist.size() == 1); BOOST_TEST (&testlist.front() == &values[0]); BOOST_TEST (&testlist.back() == &values[0]); testlist.push_back(values[1]); BOOST_TEST(*testlist.previous(testlist.end()) == values[1]); BOOST_TEST (&testlist.front() == &values[0]); BOOST_TEST (&testlist.back() == &values[1]); } //test: merge due to error in merge implementation: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_merge (ValueContainer& values) { list_type testlist1, testlist2; testlist1.push_front (values[0]); testlist2.push_front (values[4]); testlist2.push_front (values[3]); testlist2.push_front (values[2]); testlist1.merge (testlist2); int init_values [] = { 1, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } //test: merge due to error in merge implementation: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_remove_unique (ValueContainer& values) { { list_type list(values.begin(), values.end()); list.remove_if(is_even()); int init_values [] = { 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() ); } { list_type list(values.begin(), values.end()); list.remove_if(is_odd()); int init_values [] = { 2, 4 }; TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() ); } { list_type list(values.begin(), values.end()); list.remove_and_dispose_if(is_even(), test::empty_disposer()); int init_values [] = { 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() ); } { list_type list(values.begin(), values.end()); list.remove_and_dispose_if(is_odd(), test::empty_disposer()); int init_values [] = { 2, 4 }; TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() ); } { ValueContainer values2(values); list_type list(values.begin(), values.end()); list.insert_after(list.before_begin(), values2.begin(), values2.end()); list.sort(); int init_values [] = { 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() ); list.unique(); int init_values2 [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values2, list.begin() ); } } //test: constructor, iterator, sort, reverse: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_sort(ValueContainer& values) { list_type testlist (values.begin(), values.end()); { int init_values [] = { 1, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist.begin() ); } testlist.sort (even_odd()); { int init_values [] = { 2, 4, 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist.begin() ); } testlist.reverse(); { int init_values [] = { 5, 3, 1, 4, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist.begin() ); } } //test: assign, insert_after, const_iterator, erase_after, s_iterator_to, previous: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_insert(ValueContainer& values) { list_type testlist; testlist.assign (values.begin() + 2, values.begin() + 5); const list_type& const_testlist = testlist; { int init_values [] = { 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); } typename list_type::iterator i = ++testlist.begin(); BOOST_TEST (i->value_ == 4); testlist.insert_after (i, values[0]); { int init_values [] = { 3, 4, 1, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); } i = testlist.iterator_to (values[4]); BOOST_TEST (&*i == &values[4]); i = list_type::s_iterator_to (values[4]); BOOST_TEST (&*i == &values[4]); typename list_type::const_iterator ic; ic = testlist.iterator_to (static_cast< typename list_type::const_reference >(values[4])); BOOST_TEST (&*ic == &values[4]); ic = list_type::s_iterator_to (static_cast< typename list_type::const_reference >(values[4])); BOOST_TEST (&*ic == &values[4]); i = testlist.previous (i); BOOST_TEST (&*i == &values[0]); testlist.erase_after (i); BOOST_TEST (&*i == &values[0]); { int init_values [] = { 3, 4, 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); } } //test: insert, const_iterator, erase, siterator_to: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_slow_insert (ValueContainer& values) { list_type testlist; testlist.push_front (values[4]); testlist.insert (testlist.begin(), values.begin() + 2, values.begin() + 4); const list_type& const_testlist = testlist; { int init_values [] = { 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); } typename list_type::iterator i = ++testlist.begin(); BOOST_TEST (i->value_ == 4); testlist.insert (i, values[0]); { int init_values [] = { 3, 1, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); } i = testlist.iterator_to (values[4]); BOOST_TEST (&*i == &values[4]); i = list_type::s_iterator_to (values[4]); BOOST_TEST (&*i == &values[4]); i = testlist.erase (i); BOOST_TEST (i == testlist.end()); { int init_values [] = { 3, 1, 4 }; TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); } testlist.erase (++testlist.begin(), testlist.end()); BOOST_TEST (testlist.size() == 1); BOOST_TEST (testlist.begin()->value_ == 3); } template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_shift(ValueContainer& values) { list_type testlist; const int num_values = (int)values.size(); std::vector expected_values(num_values); //Shift forward all possible positions 3 times for(int s = 1; s <= num_values; ++s){ expected_values.resize(s); for(int i = 0; i < s*3; ++i){ testlist.insert_after(testlist.before_begin(), values.begin(), values.begin() + s); testlist.shift_forward(i); for(int j = 0; j < s; ++j){ expected_values[(j + s - i%s) % s] = (j + 1); } TEST_INTRUSIVE_SEQUENCE_EXPECTED(expected_values, testlist.begin()) testlist.clear(); } //Shift backwards all possible positions for(int i = 0; i < s*3; ++i){ testlist.insert_after(testlist.before_begin(), values.begin(), values.begin() + s); testlist.shift_backwards(i); for(int j = 0; j < s; ++j){ expected_values[(j + i) % s] = (j + 1); } TEST_INTRUSIVE_SEQUENCE_EXPECTED(expected_values, testlist.begin()) testlist.clear(); } } } //test: insert_after (seq-version), swap, splice_after: template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_swap(ValueContainer& values) { { list_type testlist1 (values.begin(), values.begin() + 2); list_type testlist2; testlist2.insert_after (testlist2.before_begin(), values.begin() + 2, values.begin() + 5); testlist1.swap(testlist2); { int init_values [] = { 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } { int init_values [] = { 1, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); } testlist2.splice_after (testlist2.begin(), testlist1); { int init_values [] = { 1, 3, 4, 5, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); } BOOST_TEST (testlist1.empty()); testlist1.splice_after (testlist1.before_begin(), testlist2, ++testlist2.begin()); { int init_values [] = { 4 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } { int init_values [] = { 1, 3, 5, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); } testlist1.splice_after (testlist1.begin(), testlist2, testlist2.before_begin(), ++++testlist2.begin()); { int init_values [] = { 4, 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } { int init_values [] = { 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); } } { //Now test swap when testlist2 is empty list_type testlist1 (values.begin(), values.begin() + 2); list_type testlist2; testlist1.swap(testlist2); BOOST_TEST (testlist1.empty()); { int init_values [] = { 1, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); } } { //Now test swap when testlist1 is empty list_type testlist2 (values.begin(), values.begin() + 2); list_type testlist1; testlist1.swap(testlist2); BOOST_TEST (testlist2.empty()); { int init_values [] = { 1, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } } { //Now test when both are empty list_type testlist1, testlist2; testlist2.swap(testlist1); BOOST_TEST (testlist1.empty() && testlist2.empty()); } if(!list_type::linear) { list_type testlist1 (values.begin(), values.begin() + 2); list_type testlist2 (values.begin() + 3, values.begin() + 5); swap_nodes< node_algorithms >(values[0], values[2]); { int init_values [] = { 3, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } swap_nodes< node_algorithms >(values[2], values[4]); { int init_values [] = { 5, 2 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } { int init_values [] = { 4, 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); } } if(!list_type::linear) { list_type testlist1 (values.begin(), values.begin()+1); if(testlist1.size() != 1){ abort(); } { int init_values [] = { 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } swap_nodes< node_algorithms >(values[1], values[2]); BOOST_TEST(testlist1.size() == 1); BOOST_TEST(!(&values[1])->is_linked()); BOOST_TEST(!(&values[2])->is_linked()); { int init_values [] = { 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } swap_nodes< node_algorithms >(values[0], values[2]); BOOST_TEST(testlist1.size() == 1); BOOST_TEST((&values[2])->is_linked()); BOOST_TEST(!(&values[0])->is_linked()); { int init_values [] = { 3 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } swap_nodes< node_algorithms >(values[0], values[2]); BOOST_TEST(testlist1.size() == 1); BOOST_TEST(!(&values[2])->is_linked()); BOOST_TEST((&values[0])->is_linked()); { int init_values [] = { 1 }; TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); } } } template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_clone(ValueContainer& values) { list_type testlist1 (values.begin(), values.begin() + values.size()); list_type testlist2; testlist2.clone_from(testlist1, test::new_cloner(), test::delete_disposer()); BOOST_TEST (testlist2 == testlist1); testlist2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testlist2.empty()); } template < typename ListType, typename ValueContainer > void test_slist< ListType, ValueContainer > ::test_container_from_end(ValueContainer& values, detail::true_type) { list_type testlist1 (values.begin(), values.begin() + values.size()); BOOST_TEST (testlist1 == list_type::container_from_end_iterator(testlist1.end())); BOOST_TEST (testlist1 == list_type::container_from_end_iterator(testlist1.cend())); } template < typename ValueTraits, bool ConstantTimeSize, bool Linear, bool CacheLast, bool Default_Holder, typename ValueContainer > struct make_and_test_slist : test_slist< slist< typename ValueTraits::value_type, value_traits< ValueTraits >, size_type< std::size_t >, constant_time_size< ConstantTimeSize >, linear, cache_last >, ValueContainer > {}; template < typename ValueTraits, bool ConstantTimeSize, bool Linear, bool CacheLast, typename ValueContainer > struct make_and_test_slist< ValueTraits, ConstantTimeSize, Linear, CacheLast, false, ValueContainer > : test_slist< slist< typename ValueTraits::value_type, value_traits< ValueTraits >, size_type< std::size_t >, constant_time_size< ConstantTimeSize >, linear, cache_last, header_holder_type< heap_node_holder< typename ValueTraits::pointer > > >, ValueContainer > {}; template class test_main_template { public: int operator()() { typedef testvalue< hooks > value_type; std::vector< value_type > data (5); for (int i = 0; i < 5; ++i) data[i].value_ = i + 1; make_and_test_slist < typename detail::get_base_value_traits < value_type , typename hooks::base_hook_type >::type , constant_time_size , false , false , Default_Holder , std::vector< value_type > >::test_all(data); make_and_test_slist < nonhook_node_member_value_traits< value_type, typename hooks::nonhook_node_member_type, &value_type::nhn_member_, safe_link > , constant_time_size , false , false , Default_Holder , std::vector< value_type > >::test_all(data); //Now linear slists make_and_test_slist < typename detail::get_member_value_traits < member_hook< value_type , typename hooks::member_hook_type , &value_type::node_ > >::type , constant_time_size , true , false , Default_Holder , std::vector< value_type > >::test_all(data); //Now the same but caching the last node make_and_test_slist < typename detail::get_base_value_traits < value_type , typename hooks::base_hook_type >::type , constant_time_size , false , true , Default_Holder , std::vector< value_type > >::test_all(data); //Now linear slists make_and_test_slist < typename detail::get_base_value_traits < value_type , typename hooks::base_hook_type >::type , constant_time_size , true , true , Default_Holder , std::vector< value_type > >::test_all(data); return 0; } }; template class test_main_template { public: int operator()() { typedef testvalue< hooks > value_type; std::vector< value_type > data (5); for (int i = 0; i < 5; ++i) data[i].value_ = i + 1; make_and_test_slist < typename detail::get_base_value_traits < value_type , typename hooks::auto_base_hook_type >::type , false , false , false , Default_Holder , std::vector< value_type > >::test_all(data); make_and_test_slist < nonhook_node_member_value_traits< value_type, typename hooks::nonhook_node_member_type, &value_type::nhn_member_, safe_link > , false , false , true , Default_Holder , std::vector< value_type > >::test_all(data); make_and_test_slist < typename detail::get_member_value_traits < member_hook< value_type , typename hooks::member_hook_type , &value_type::node_ > >::type , false , true , false , Default_Holder , std::vector< value_type > >::test_all(data); make_and_test_slist < typename detail::get_base_value_traits < value_type , typename hooks::base_hook_type >::type , false , true , true , Default_Holder , std::vector< value_type > >::test_all(data); return 0; } }; template < bool ConstantTimeSize > struct test_main_template_bptr { int operator()() { typedef BPtr_Value value_type; typedef BPtr_Value_Traits< List_BPtr_Node_Traits > list_value_traits; typedef typename list_value_traits::node_ptr node_ptr; typedef bounded_allocator< value_type > allocator_type; bounded_allocator_scope bounded_scope; (void)bounded_scope; allocator_type allocator; { bounded_reference_cont< value_type > ref_cont; for (int i = 0; i < 5; ++i) { node_ptr tmp = allocator.allocate(1); new (tmp.raw()) value_type(i + 1); ref_cont.push_back(*tmp); } test_slist < slist < value_type, value_traits< list_value_traits >, size_type< std::size_t >, constant_time_size< ConstantTimeSize >, header_holder_type< bounded_pointer_holder< value_type > > >, bounded_reference_cont< value_type > >::test_all(ref_cont); } return 0; } }; int main(int, char* []) { // test (plain/smart pointers) x (nonconst/const size) x (void node allocator) test_main_template()(); test_main_template, false, true>()(); test_main_template()(); test_main_template, true, true>()(); // test (bounded pointers) x ((nonconst/const size) x (special node allocator) test_main_template_bptr< true >()(); test_main_template_bptr< false >()(); return boost::report_errors(); }