///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2015-2015. // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #include #include #include "common_functors.hpp" #include #include //std::sort #include #include #include "test_macros.hpp" #include "test_container.hpp" #include "unordered_test_common.hpp" namespace boost{ namespace intrusive{ namespace test{ static const std::size_t BucketSize = 8; template struct test_unordered { typedef typename ContainerDefiner::value_cont_type value_cont_type; static void test_all(value_cont_type& values); private: static void test_sort(value_cont_type& values); static void test_insert(value_cont_type& values, detail::true_); static void test_insert(value_cont_type& values, detail::false_); static void test_swap(value_cont_type& values); static void test_rehash(value_cont_type& values, detail::true_); static void test_rehash(value_cont_type& values, detail::false_); static void test_find(value_cont_type& values); static void test_impl(); static void test_clone(value_cont_type& values); }; template void test_unordered::test_all (value_cont_type& values) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; { typename unordered_type::bucket_type buckets [BucketSize]; unordered_type testset (bucket_traits(pointer_traits::pointer_to(buckets[0]), BucketSize)); testset.insert(values.begin(), values.end()); test::test_container(testset); testset.clear(); testset.insert(values.begin(), values.end()); test::test_common_unordered_and_associative_container(testset, values); testset.clear(); testset.insert(values.begin(), values.end()); test::test_unordered_associative_container(testset, values); testset.clear(); testset.insert(values.begin(), values.end()); typedef detail::bool_::value> select_t; test::test_maybe_unique_container(testset, values, select_t()); } { value_cont_type vals(BucketSize); for (int i = 0; i < (int)BucketSize; ++i) (&vals[i])->value_ = i; typename unordered_type::bucket_type buckets [BucketSize]; unordered_type testset(bucket_traits( pointer_traits::pointer_to(buckets[0]), BucketSize)); testset.insert(vals.begin(), vals.end()); test::test_iterator_forward(testset); } test_sort(values); test_insert(values, detail::bool_::value>()); test_swap(values); test_rehash(values, detail::bool_()); test_find(values); test_impl(); test_clone(values); } //test case due to an error in tree implementation: template void test_unordered::test_impl() { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; value_cont_type values (5); for (int i = 0; i < 5; ++i) values[i].value_ = i; typename unordered_type::bucket_type buckets [BucketSize]; unordered_type testset(bucket_traits( pointer_traits::pointer_to(buckets[0]), BucketSize)); for (int i = 0; i < 5; ++i) testset.insert (values[i]); testset.erase (testset.iterator_to (values[0])); testset.erase (testset.iterator_to (values[1])); testset.insert (values[1]); testset.erase (testset.iterator_to (values[2])); testset.erase (testset.iterator_to (values[3])); } //test: constructor, iterator, clear, reverse_iterator, front, back, size: template void test_unordered::test_sort(value_cont_type& values) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; typename unordered_type::bucket_type buckets [BucketSize]; unordered_type testset1 (values.begin(), values.end(), bucket_traits (pointer_traits::pointer_to(buckets[0]), BucketSize)); if(unordered_type::incremental){ { int init_values [] = { 4, 5, 1, 2, 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } } else{ { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } } testset1.clear(); BOOST_TEST (testset1.empty()); } //test: insert, const_iterator, const_reverse_iterator, erase, iterator_to: template void test_unordered::test_insert(value_cont_type& values, detail::false_) //not multikey { typedef typename ContainerDefiner::template container <>::type unordered_set_type; typedef typename unordered_set_type::bucket_traits bucket_traits; typedef typename unordered_set_type::key_of_value key_of_value; typename unordered_set_type::bucket_type buckets [BucketSize]; unordered_set_type testset(bucket_traits( pointer_traits:: pointer_to(buckets[0]), BucketSize)); testset.insert(&values[0] + 2, &values[0] + 5); typename unordered_set_type::insert_commit_data commit_data; BOOST_TEST ((!testset.insert_check(key_of_value()(values[2]), commit_data).second)); BOOST_TEST (( testset.insert_check(key_of_value()(values[0]), commit_data).second)); const unordered_set_type& const_testset = testset; if(unordered_set_type::incremental) { { int init_values [] = { 4, 5, 1 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } typename unordered_set_type::iterator i = testset.begin(); BOOST_TEST (i->value_ == 4); i = testset.insert(values[0]).first; BOOST_TEST (&*i == &values[0]); i = testset.iterator_to (values[2]); BOOST_TEST (&*i == &values[2]); testset.erase (i); { int init_values [] = { 5, 1, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } } else{ { int init_values [] = { 1, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } typename unordered_set_type::iterator i = testset.begin(); BOOST_TEST (i->value_ == 1); i = testset.insert(values[0]).first; BOOST_TEST (&*i == &values[0]); i = testset.iterator_to (values[2]); BOOST_TEST (&*i == &values[2]); testset.erase (i); { int init_values [] = { 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } } } template void test_unordered::test_insert(value_cont_type& values, detail::true_) //is multikey { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; typedef typename unordered_type::iterator iterator; typedef typename unordered_type::key_type key_type; { typename unordered_type::bucket_type buckets [BucketSize]; unordered_type testset(bucket_traits( pointer_traits::pointer_to(buckets[0]), BucketSize)); testset.insert(&values[0] + 2, &values[0] + 5); const unordered_type& const_testset = testset; if(unordered_type::incremental){ { { int init_values [] = { 4, 5, 1 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } typename unordered_type::iterator i = testset.begin(); BOOST_TEST (i->value_ == 4); i = testset.insert (values[0]); BOOST_TEST (&*i == &values[0]); i = testset.iterator_to (values[2]); BOOST_TEST (&*i == &values[2]); testset.erase(i); { int init_values [] = { 5, 1, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } testset.clear(); testset.insert(&values[0], &values[0] + values.size()); { int init_values [] = { 4, 5, 1, 2, 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } BOOST_TEST (testset.erase(key_type(1)) == 1); BOOST_TEST (testset.erase(key_type(2)) == 2); BOOST_TEST (testset.erase(key_type(3)) == 1); BOOST_TEST (testset.erase(key_type(4)) == 1); BOOST_TEST (testset.erase(key_type(5)) == 1); BOOST_TEST (testset.empty() == true); //Now with a single bucket typename unordered_type::bucket_type single_bucket[1]; unordered_type testset2(bucket_traits( pointer_traits::pointer_to(single_bucket[0]), 1)); testset2.insert(&values[0], &values[0] + values.size()); BOOST_TEST (testset2.erase(key_type(5)) == 1); BOOST_TEST (testset2.erase(key_type(2)) == 2); BOOST_TEST (testset2.erase(key_type(1)) == 1); BOOST_TEST (testset2.erase(key_type(4)) == 1); BOOST_TEST (testset2.erase(key_type(3)) == 1); BOOST_TEST (testset2.empty() == true); } } else{ { { int init_values [] = { 1, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } typename unordered_type::iterator i = testset.begin(); BOOST_TEST (i->value_ == 1); i = testset.insert (values[0]); BOOST_TEST (&*i == &values[0]); i = testset.iterator_to (values[2]); BOOST_TEST (&*i == &values[2]); testset.erase(i); { int init_values [] = { 1, 3, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } testset.clear(); testset.insert(&values[0], &values[0] + values.size()); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); } BOOST_TEST (testset.erase(key_type(1)) == 1); BOOST_TEST (testset.erase(key_type(2)) == 2); BOOST_TEST (testset.erase(key_type(3)) == 1); BOOST_TEST (testset.erase(key_type(4)) == 1); BOOST_TEST (testset.erase(key_type(5)) == 1); BOOST_TEST (testset.empty() == true); //Now with a single bucket typename unordered_type::bucket_type single_bucket[1]; unordered_type testset2(bucket_traits( pointer_traits::pointer_to(single_bucket[0]), 1)); testset2.insert(&values[0], &values[0] + values.size()); BOOST_TEST (testset2.erase(key_type(5)) == 1); BOOST_TEST (testset2.erase(key_type(2)) == 2); BOOST_TEST (testset2.erase(key_type(1)) == 1); BOOST_TEST (testset2.erase(key_type(4)) == 1); BOOST_TEST (testset2.erase(key_type(3)) == 1); BOOST_TEST (testset2.empty() == true); } } { //Now erase just one per loop const int random_init[] = { 3, 2, 4, 1, 5, 2, 2 }; const unsigned int random_size = sizeof(random_init)/sizeof(random_init[0]); typename unordered_type::bucket_type single_bucket[1]; for(unsigned int i = 0, max = random_size; i != max; ++i){ value_cont_type data (random_size); for (unsigned int j = 0; j < random_size; ++j) data[j].value_ = random_init[j]; unordered_type testset_new(bucket_traits( pointer_traits::pointer_to(single_bucket[0]), 1)); testset_new.insert(&data[0], &data[0]+max); testset_new.erase(testset_new.iterator_to(data[i])); BOOST_TEST (testset_new.size() == (max -1)); } } } { const unsigned int LoadFactor = 3; const unsigned int NumIterations = BucketSize*LoadFactor; value_cont_type random_init(NumIterations);//Preserve memory value_cont_type set_tester; set_tester.reserve(NumIterations); //Initialize values for (unsigned int i = 0; i < NumIterations; ++i){ random_init[i].value_ = i*2;//(i/LoadFactor)*LoadFactor; } typename unordered_type::bucket_type buckets [BucketSize]; bucket_traits btraits(pointer_traits::pointer_to(buckets[0]), BucketSize); for(unsigned int initial_pos = 0; initial_pos != (NumIterations+1); ++initial_pos){ for(unsigned int final_pos = initial_pos; final_pos != (NumIterations+1); ++final_pos){ //Create intrusive container inserting values unordered_type testset ( random_init.data() , random_init.data() + random_init.size() , btraits); BOOST_TEST (testset.size() == random_init.size()); //Obtain the iterator range to erase iterator it_beg_pos = testset.begin(); for(unsigned int it_beg_pos_num = 0; it_beg_pos_num != initial_pos; ++it_beg_pos_num){ ++it_beg_pos; } iterator it_end_pos(it_beg_pos); for(unsigned int it_end_pos_num = 0; it_end_pos_num != (final_pos - initial_pos); ++it_end_pos_num){ ++it_end_pos; } //Erase the same values in both the intrusive and original vector std::size_t erased_cnt = boost::intrusive::iterator_distance(it_beg_pos, it_end_pos); //Erase values from the intrusive container testset.erase(it_beg_pos, it_end_pos); BOOST_TEST (testset.size() == (random_init.size()-(final_pos - initial_pos))); //Now test... BOOST_TEST ((random_init.size() - erased_cnt) == testset.size()); //Create an ordered copy of the intrusive container set_tester.insert(set_tester.end(), testset.begin(), testset.end()); std::sort(set_tester.begin(), set_tester.end()); { typename value_cont_type::iterator it = set_tester.begin(), itend = set_tester.end(); typename value_cont_type::iterator random_init_it(random_init.begin()); for( ; it != itend; ++it){ while(!random_init_it->is_linked()) ++random_init_it; BOOST_TEST(*it == *random_init_it); ++random_init_it; } } set_tester.clear(); } } } } //test: insert (seq-version), swap, erase (seq-version), size: template void test_unordered::test_swap(value_cont_type& values) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; typename unordered_type::bucket_type buckets [BucketSize]; typename unordered_type::bucket_type buckets2 [BucketSize]; unordered_type testset1(&values[0], &values[0] + 2, bucket_traits(pointer_traits::pointer_to(buckets[0]), BucketSize)); unordered_type testset2(bucket_traits( pointer_traits::pointer_to(buckets2[0]), BucketSize)); testset2.insert (&values[0] + 2, &values[0] + 6); testset1.swap (testset2); if(unordered_type::incremental){ { int init_values [] = { 4, 5, 1, 2 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } { int init_values [] = { 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset2 ); } testset1.erase (testset1.iterator_to(values[4]), testset1.end()); BOOST_TEST (testset1.size() == 1); // BOOST_TEST (&testset1.front() == &values[3]); BOOST_TEST (&*testset1.begin() == &values[2]); } else{ { int init_values [] = { 1, 2, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } { int init_values [] = { 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset2 ); } testset1.erase (testset1.iterator_to(values[5]), testset1.end()); BOOST_TEST (testset1.size() == 1); // BOOST_TEST (&testset1.front() == &values[3]); BOOST_TEST (&*testset1.begin() == &values[3]); } } //test: rehash: template void test_unordered::test_rehash(value_cont_type& values, detail::true_) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; //Build a uset typename unordered_type::bucket_type buckets1 [BucketSize]; typename unordered_type::bucket_type buckets2 [BucketSize*2]; unordered_type testset1(&values[0], &values[0] + values.size(), bucket_traits(pointer_traits:: pointer_to(buckets1[0]), BucketSize)); //Test current state BOOST_TEST(testset1.split_count() == BucketSize/2); { int init_values [] = { 4, 5, 1, 2, 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Incremental rehash step BOOST_TEST (testset1.incremental_rehash() == true); BOOST_TEST(testset1.split_count() == (BucketSize/2+1)); { int init_values [] = { 5, 1, 2, 2, 3, 4 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Rest of incremental rehashes should lead to the same sequence for(std::size_t split_bucket = testset1.split_count(); split_bucket != BucketSize; ++split_bucket){ BOOST_TEST (testset1.incremental_rehash() == true); BOOST_TEST(testset1.split_count() == (split_bucket+1)); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } } //This incremental rehash should fail because we've reached the end of the bucket array BOOST_TEST (testset1.incremental_rehash() == false); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } // //Try incremental hashing specifying a new bucket traits pointing to the same array // //This incremental rehash should fail because the new size is not twice the original BOOST_TEST(testset1.incremental_rehash(bucket_traits( pointer_traits:: pointer_to(buckets1[0]), BucketSize)) == false); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } // //Try incremental hashing specifying a new bucket traits pointing to the same array // //This incremental rehash should fail because the new size is not twice the original BOOST_TEST(testset1.incremental_rehash(bucket_traits( pointer_traits:: pointer_to(buckets2[0]), BucketSize)) == false); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //This incremental rehash should success because the new size is twice the original //and split_count is the same as the old bucket count BOOST_TEST(testset1.incremental_rehash(bucket_traits( pointer_traits:: pointer_to(buckets2[0]), BucketSize*2)) == true); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //This incremental rehash should also success because the new size is half the original //and split_count is the same as the new bucket count BOOST_TEST(testset1.incremental_rehash(bucket_traits( pointer_traits:: pointer_to(buckets1[0]), BucketSize)) == true); BOOST_TEST(testset1.split_count() == BucketSize); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Shrink rehash testset1.rehash(bucket_traits( pointer_traits:: pointer_to(buckets1[0]), 4)); BOOST_TEST (testset1.incremental_rehash() == false); { int init_values [] = { 4, 5, 1, 2, 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Shrink rehash again testset1.rehash(bucket_traits( pointer_traits:: pointer_to(buckets1[0]), 2)); BOOST_TEST (testset1.incremental_rehash() == false); { int init_values [] = { 2, 2, 4, 3, 5, 1 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Growing rehash testset1.rehash(bucket_traits( pointer_traits:: pointer_to(buckets1[0]), BucketSize)); //Full rehash (no effects) testset1.full_rehash(); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Incremental rehash shrinking //First incremental rehashes should lead to the same sequence for(std::size_t split_bucket = testset1.split_count(); split_bucket > 6; --split_bucket){ BOOST_TEST (testset1.incremental_rehash(false) == true); BOOST_TEST(testset1.split_count() == (split_bucket-1)); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } } //Incremental rehash step BOOST_TEST (testset1.incremental_rehash(false) == true); BOOST_TEST(testset1.split_count() == (BucketSize/2+1)); { int init_values [] = { 5, 1, 2, 2, 3, 4 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Incremental rehash step 2 BOOST_TEST (testset1.incremental_rehash(false) == true); BOOST_TEST(testset1.split_count() == (BucketSize/2)); { int init_values [] = { 4, 5, 1, 2, 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //This incremental rehash should fail because we've reached the half of the bucket array BOOST_TEST(testset1.incremental_rehash(false) == false); BOOST_TEST(testset1.split_count() == BucketSize/2); { int init_values [] = { 4, 5, 1, 2, 2, 3 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } } template void test_unordered::test_rehash(value_cont_type& values, detail::false_) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; typename unordered_type::bucket_type buckets1 [BucketSize]; typename unordered_type::bucket_type buckets2 [2]; typename unordered_type::bucket_type buckets3 [BucketSize*2]; unordered_type testset1(&values[0], &values[0] + 6, bucket_traits( pointer_traits:: pointer_to(buckets1[0]), BucketSize)); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } testset1.rehash(bucket_traits( pointer_traits::pointer_to(buckets2[0]), 2)); { int init_values [] = { 4, 2, 2, 5, 3, 1 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } testset1.rehash(bucket_traits( pointer_traits::pointer_to(buckets3[0]), BucketSize*2)); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Now rehash reducing the buckets testset1.rehash(bucket_traits( pointer_traits::pointer_to(buckets3[0]), 2)); { int init_values [] = { 4, 2, 2, 5, 3, 1 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Now rehash increasing the buckets testset1.rehash(bucket_traits( pointer_traits::pointer_to(buckets3[0]), BucketSize*2)); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } //Full rehash (no effects) testset1.full_rehash(); { int init_values [] = { 1, 2, 2, 3, 4, 5 }; TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); } } //test: find, equal_range (lower_bound, upper_bound): template void test_unordered::test_find(value_cont_type& values) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::value_type value_type; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; typedef typename unordered_type::key_of_value key_of_value; const bool is_multikey = boost::intrusive::test::is_multikey_true::value; typename unordered_type::bucket_type buckets[BucketSize]; unordered_type testset(values.begin(), values.end(), bucket_traits( pointer_traits::pointer_to(buckets[0]), BucketSize)); typedef typename unordered_type::iterator iterator; value_type cmp_val; cmp_val.value_ = 2; BOOST_TEST (testset.count(key_of_value()(cmp_val)) == (is_multikey ? 2 : 1)); iterator i = testset.find (key_of_value()(cmp_val)); BOOST_TEST (i->value_ == 2); if(is_multikey) BOOST_TEST ((++i)->value_ == 2); else BOOST_TEST ((++i)->value_ != 2); std::pair range = testset.equal_range (key_of_value()(cmp_val)); BOOST_TEST (range.first->value_ == 2); BOOST_TEST (range.second->value_ == 3); BOOST_TEST (boost::intrusive::iterator_distance (range.first, range.second) == (is_multikey ? 2 : 1)); cmp_val.value_ = 7; BOOST_TEST (testset.find (key_of_value()(cmp_val)) == testset.end()); BOOST_TEST (testset.count(key_of_value()(cmp_val)) == 0); } template void test_unordered::test_clone(value_cont_type& values) { typedef typename ContainerDefiner::template container <>::type unordered_type; typedef typename unordered_type::value_type value_type; typedef std::multiset std_multiset_t; typedef typename unordered_type::bucket_traits bucket_traits; typedef typename unordered_type::bucket_ptr bucket_ptr; { //Test with equal bucket arrays typename unordered_type::bucket_type buckets1 [BucketSize]; typename unordered_type::bucket_type buckets2 [BucketSize]; unordered_type testset1 (values.begin(), values.end(), bucket_traits( pointer_traits::pointer_to(buckets1[0]), BucketSize)); unordered_type testset2 (bucket_traits( pointer_traits::pointer_to(buckets2[0]), BucketSize)); testset2.clone_from(testset1, test::new_cloner(), test::delete_disposer()); BOOST_TEST(testset1 == testset2); //Ordering is not guarantee in the cloning so insert data in a set and test std_multiset_t src(testset1.begin(), testset1.end()); std_multiset_t dst(testset2.begin(), testset2.end()); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); testset2.clone_from(boost::move(testset1), test::new_nonconst_cloner(), test::delete_disposer()); BOOST_TEST(testset1 == testset2); //Ordering is not guarantee in the cloning so insert data in a set and test std_multiset_t(testset1.begin(), testset1.end()).swap(src); std_multiset_t(testset2.begin(), testset2.end()).swap(dst); BOOST_TEST(src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); } { //Test with bigger source bucket arrays typename unordered_type::bucket_type buckets1 [BucketSize*2]; typename unordered_type::bucket_type buckets2 [BucketSize]; unordered_type testset1 (values.begin(), values.end(), bucket_traits( pointer_traits::pointer_to(buckets1[0]), BucketSize*2)); unordered_type testset2 (bucket_traits( pointer_traits::pointer_to(buckets2[0]), BucketSize)); testset2.clone_from(testset1, test::new_cloner(), test::delete_disposer()); BOOST_TEST(testset1 == testset2); //Ordering is not guarantee in the cloning so insert data in a set and test std_multiset_t src(testset1.begin(), testset1.end()); std_multiset_t dst(testset2.begin(), testset2.end()); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); testset2.clone_from(boost::move(testset1), test::new_nonconst_cloner(), test::delete_disposer()); BOOST_TEST(testset1 == testset2); //Ordering is not guarantee in the cloning so insert data in a set and test std_multiset_t(testset1.begin(), testset1.end()).swap(src); std_multiset_t(testset2.begin(), testset2.end()).swap(dst); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); } { //Test with smaller source bucket arrays typename unordered_type::bucket_type buckets1 [BucketSize]; typename unordered_type::bucket_type buckets2 [BucketSize*2]; unordered_type testset1 (values.begin(), values.end(), bucket_traits( pointer_traits::pointer_to(buckets1[0]), BucketSize)); unordered_type testset2 (bucket_traits( pointer_traits::pointer_to(buckets2[0]), BucketSize*2)); testset2.clone_from(testset1, test::new_cloner(), test::delete_disposer()); BOOST_TEST(testset1 == testset2); //Ordering is not guaranteed in the cloning so insert data in a set and test std_multiset_t src(testset1.begin(), testset1.end()); std_multiset_t dst(testset2.begin(), testset2.end()); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); testset2.clone_from(boost::move(testset1), test::new_nonconst_cloner(), test::delete_disposer()); BOOST_TEST(testset1 == testset2); //Ordering is not guaranteed in the cloning so insert data in a set and test std_multiset_t(testset1.begin(), testset1.end()).swap(src); std_multiset_t(testset2.begin(), testset2.end()).swap(dst); BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin())); testset2.clear_and_dispose(test::delete_disposer()); BOOST_TEST (testset2.empty()); } } } //namespace test{ } //namespace intrusive{ } //namespace boost{