// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include "test_legendre.hpp" // // DESCRIPTION: // ~~~~~~~~~~~~ // // This file tests the legendre polynomials. // There are two sets of tests, spot // tests which compare our results with selected values computed // using the online special function calculator at // functions.wolfram.com, while the bulk of the accuracy tests // use values generated with NTL::RR at 1000-bit precision // and our generic versions of these functions. // // Note that when this file is first run on a new platform many of // these tests will fail: the default accuracy is 1 epsilon which // is too tight for most platforms. In this situation you will // need to cast a human eye over the error rates reported and make // a judgement as to whether they are acceptable. Either way please // report the results to the Boost mailing list. Acceptable rates of // error are marked up below as a series of regular expressions that // identify the compiler/stdlib/platform/data-type/test-data/test-function // along with the maximum expected peek and RMS mean errors for that // test. // void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double"; } else { largest_type = "long double"; } #else largest_type = "(long\\s+)?double"; #endif // // Linux: // if((std::numeric_limits::digits <= 64) && (std::numeric_limits::digits != std::numeric_limits::digits)) { #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*", // test data group ".*", 10, 5); // test function #endif } if(std::numeric_limits::digits == 64) { add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_p", 1000, 200); // test function add_expected_result( "Intel.*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_q", 10000, 1000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_q", 7000, 1000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_p", 1000, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_q", 7000, 1000); // test function } // // Catch all cases come last: // add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_p", 500, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_q", 5400, 500); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*", // test data group "legendre_p", 300, 80); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*", // test data group "legendre_q", 100, 50); // test function add_expected_result( "Intel.*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Associated Legendre Polynomials.*", // test data group ".*", 300, 20); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Associated Legendre Polynomials.*", // test data group ".*", 200, 20); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_p", 500, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "legendre_q", 5400, 500); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*", // test data group "legendre_p", 300, 80); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*", // test data group "legendre_q", 100, 50); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Associated Legendre Polynomials.*", // test data group ".*", 200, 20); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; test_spots(0.0F, "float"); test_spots(0.0, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L, "long double"); test_spots(boost::math::concepts::real_concept(0.1), "real_concept"); #endif expected_results(); test_legendre_p(0.1F, "float"); test_legendre_p(0.1, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_legendre_p(0.1L, "long double"); #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_legendre_p(boost::math::concepts::real_concept(0.1), "real_concept"); #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::endl; #endif test_legendre_p_prime(); test_legendre_p_prime(); test_legendre_p_prime(); int ulp_distance = test_legendre_p_zeros_double_ulp(1, 100); BOOST_CHECK(ulp_distance <= 2); test_legendre_p_zeros(); test_legendre_p_zeros(); test_legendre_p_zeros(); }