// test_nc_beta.cpp // Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // // This must appear *before* any #includes, and precludes pch usage: // #define BOOST_MATH_ASSERT_UNDEFINED_POLICY false #ifdef _MSC_VER #pragma warning (disable:4127 4512) #endif #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT) # define TEST_FLOAT # define TEST_DOUBLE # define TEST_LDOUBLE # define TEST_REAL_CONCEPT #endif #include // for real_concept #include // for chi_squared_distribution #include // for poisson_distribution #define BOOST_TEST_MAIN #include // for test_main #include #include #include // for BOOST_CHECK_CLOSE #include "functor.hpp" #include "handle_test_result.hpp" #include "test_ncbeta_hooks.hpp" #include "table_type.hpp" #include "test_nc_beta.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double|real_concept"; } else { largest_type = "long double|real_concept"; } #else largest_type = "(long\\s+)?double|real_concept"; #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::tools::digits() == 64) { // // Allow a small amount of error leakage from long double to double: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "double", // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 5, 5); // test function } if(boost::math::tools::digits() == 64) { add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 1200, 500); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 40000, 6000); // test function } #endif // // Catch all cases come last: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 1500, 500); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 30000, 4000); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 20000, 2000); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template RealType naive_pdf(RealType a, RealType b, RealType lam, RealType x) { using namespace boost::math; RealType term = pdf(poisson_distribution(lam/2), 0) * ibeta_derivative(a, b, x); RealType sum = term; int i = 1; while(term / sum > tools::epsilon()) { term = pdf(poisson_distribution(lam/2), i) * ibeta_derivative(a + i, b, x); ++i; sum += term; } return sum; } template void test_spot( RealType a, // alpha RealType b, // beta RealType ncp, // non-centrality param RealType cs, // Chi Square statistic RealType P, // CDF RealType Q, // Complement of CDF RealType D, // PDF RealType tol) // Test tolerance { boost::math::non_central_beta_distribution dist(a, b, ncp); BOOST_CHECK_CLOSE( cdf(dist, cs), P, tol); // // Sanity checking using the naive PDF calculation above fails at // float precision: // if(!boost::is_same::value) { BOOST_CHECK_CLOSE( pdf(dist, cs), naive_pdf(dist.alpha(), dist.beta(), ncp, cs), tol); } BOOST_CHECK_CLOSE( pdf(dist, cs), D, tol); if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarantee Q is reasonably free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, cs)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), cs, tol * 10); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), cs, tol * 10); } } template // Any floating-point type RealType. void test_spots(RealType) { RealType tolerance = (std::max)( boost::math::tools::epsilon() * 100, (RealType)1e-6) * 100; RealType abs_tolerance = boost::math::tools::epsilon() * 100; cout << "Tolerance = " << tolerance << "%." << endl; // // Spot tests use values computed by the R statistical // package and the pbeta and dbeta functions: // test_spot( RealType(2), // alpha RealType(5), // beta RealType(1), // non-centrality param RealType(0.25), // Chi Square statistic RealType(0.3658349), // CDF RealType(1-0.3658349), // Complement of CDF RealType(2.184465), // PDF RealType(tolerance)); test_spot( RealType(20), // alpha RealType(15), // beta RealType(35), // non-centrality param RealType(0.75), // Chi Square statistic RealType(0.6994175), // CDF RealType(1-0.6994175), // Complement of CDF RealType(5.576146), // PDF RealType(tolerance)); test_spot( RealType(100), // alpha RealType(3), // beta RealType(63), // non-centrality param RealType(0.95), // Chi Square statistic RealType(0.03529306), // CDF RealType(1-0.03529306), // Complement of CDF RealType(3.637894), // PDF RealType(tolerance)); test_spot( RealType(0.25), // alpha RealType(0.75), // beta RealType(150), // non-centrality param RealType(0.975), // Chi Square statistic RealType(0.09752216), // CDF RealType(1-0.09752216), // Complement of CDF RealType(8.020935), // PDF RealType(tolerance)); BOOST_MATH_STD_USING boost::math::non_central_beta_distribution dist(100, 3, 63); BOOST_CHECK_CLOSE(mean(dist), RealType(4.82280451915522329944315287538684030781836554279474240490936e13L) * exp(-RealType(31.5)) * 100 / 103, tolerance); // Variance only guarantees small absolute error: BOOST_CHECK_SMALL(variance(dist) - static_cast(RealType(4.85592267707818899235900237275021938334418424134218087127572e13L) * exp(RealType(-31.5)) * 100 * 101 / (103 * 104) - RealType(4.82280451915522329944315287538684030781836554279474240490936e13L) * RealType(4.82280451915522329944315287538684030781836554279474240490936e13L) * exp(RealType(-63)) * 10000 / (103 * 103)), abs_tolerance); BOOST_MATH_CHECK_THROW(skewness(dist), boost::math::evaluation_error); BOOST_MATH_CHECK_THROW(kurtosis(dist), boost::math::evaluation_error); BOOST_MATH_CHECK_THROW(kurtosis_excess(dist), boost::math::evaluation_error); } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; // Basic sanity-check spot values. expected_results(); // (Parameter value, arbitrarily zero, only communicates the floating point type). #ifdef TEST_FLOAT test_spots(0.0F); // Test float. #endif #ifdef TEST_DOUBLE test_spots(0.0); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_spots(0.0L); // Test long double. #endif #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) #ifdef TEST_REAL_CONCEPT test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif #endif #ifdef TEST_FLOAT test_accuracy(0.0F, "float"); // Test float. #endif #ifdef TEST_DOUBLE test_accuracy(0.0, "double"); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_accuracy(0.0L, "long double"); // Test long double. #endif #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) #ifdef TEST_REAL_CONCEPT test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept. #endif #endif #endif } // BOOST_AUTO_TEST_CASE( test_main )