namespace glm { template GLM_FUNC_QUALIFIER qua mix(qua const& x, qua const& y, T a) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'mix' only accept floating-point inputs"); T const cosTheta = dot(x, y); // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > static_cast(1) - epsilon()) { // Linear interpolation return qua( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), mix(x.z, y.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((static_cast(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); } } template GLM_FUNC_QUALIFIER qua lerp(qua const& x, qua const& y, T a) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'lerp' only accept floating-point inputs"); // Lerp is only defined in [0, 1] assert(a >= static_cast(0)); assert(a <= static_cast(1)); return x * (static_cast(1) - a) + (y * a); } template GLM_FUNC_QUALIFIER qua slerp(qua const& x, qua const& y, T a) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'slerp' only accept floating-point inputs"); qua z = y; T cosTheta = dot(x, y); // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if(cosTheta < static_cast(0)) { z = -y; cosTheta = -cosTheta; } // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > static_cast(1) - epsilon()) { // Linear interpolation return qua( mix(x.w, z.w, a), mix(x.x, z.x, a), mix(x.y, z.y, a), mix(x.z, z.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((static_cast(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); } } template GLM_FUNC_QUALIFIER qua slerp(qua const& x, qua const& y, T a, S k) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'slerp' only accept floating-point inputs"); GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'slerp' only accept integer for spin count"); qua z = y; T cosTheta = dot(x, y); // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if (cosTheta < static_cast(0)) { z = -y; cosTheta = -cosTheta; } // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if (cosTheta > static_cast(1) - epsilon()) { // Linear interpolation return qua( mix(x.w, z.w, a), mix(x.x, z.x, a), mix(x.y, z.y, a), mix(x.z, z.z, a)); } else { // Graphics Gems III, page 96 T angle = acos(cosTheta); T phi = angle + k * glm::pi(); return (sin(angle - a * phi)* x + sin(a * phi) * z) / sin(angle); } } template GLM_FUNC_QUALIFIER qua conjugate(qua const& q) { return qua(q.w, -q.x, -q.y, -q.z); } template GLM_FUNC_QUALIFIER qua inverse(qua const& q) { return conjugate(q) / dot(q, q); } template GLM_FUNC_QUALIFIER vec<4, bool, Q> isnan(qua const& q) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isnan' only accept floating-point inputs"); return vec<4, bool, Q>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); } template GLM_FUNC_QUALIFIER vec<4, bool, Q> isinf(qua const& q) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isinf' only accept floating-point inputs"); return vec<4, bool, Q>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); } }//namespace glm #if GLM_CONFIG_SIMD == GLM_ENABLE # include "quaternion_common_simd.inl" #endif