// // composed_2.cpp // ~~~~~~~~~~~~~~ // // Copyright (c) 2003-2019 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include #include #include #include #include #include #include #include #include using boost::asio::ip::tcp; //------------------------------------------------------------------------------ // This next simplest example of a composed asynchronous operation involves // repackaging multiple operations but choosing to invoke just one of them. All // of these underlying operations have the same completion signature. The // asynchronous operation requirements are met by delegating responsibility to // the underlying operations. template auto async_write_message(tcp::socket& socket, const char* message, bool allow_partial_write, CompletionToken&& token) // The return type of the initiating function is deduced from the combination // of CompletionToken type and the completion handler's signature. When the // completion token is a simple callback, the return type is void. However, // when the completion token is boost::asio::yield_context (used for stackful // coroutines) the return type would be std::size_t, and when the completion // token is boost::asio::use_future it would be std::future. -> typename boost::asio::async_result< typename std::decay::type, void(boost::system::error_code, std::size_t)>::return_type { // As the return type of the initiating function is deduced solely from the // CompletionToken and completion signature, we know that two different // asynchronous operations having the same completion signature will produce // the same return type, when passed the same CompletionToken. This allows us // to trivially delegate to alternate implementations. if (allow_partial_write) { // When delegating to an underlying operation we must take care to // perfectly forward the completion token. This ensures that our operation // works correctly with move-only function objects as callbacks, as well as // other completion token types. return socket.async_write_some( boost::asio::buffer(message, std::strlen(message)), std::forward(token)); } else { // As above, we must perfectly forward the completion token when calling // the alternate underlying operation. return boost::asio::async_write(socket, boost::asio::buffer(message, std::strlen(message)), std::forward(token)); } } //------------------------------------------------------------------------------ void test_callback() { boost::asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using a lambda as a callback. async_write_message(socket, "Testing callback\r\n", false, [](const boost::system::error_code& error, std::size_t n) { if (!error) { std::cout << n << " bytes transferred\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_future() { boost::asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the use_future completion token. // This token causes the operation's initiating function to return a future, // which may be used to synchronously wait for the result of the operation. std::future f = async_write_message( socket, "Testing future\r\n", false, boost::asio::use_future); io_context.run(); try { // Get the result of the operation. std::size_t n = f.get(); std::cout << n << " bytes transferred\n"; } catch (const std::exception& e) { std::cout << "Error: " << e.what() << "\n"; } } //------------------------------------------------------------------------------ int main() { test_callback(); test_future(); }