////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2004-2013. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "print_container.hpp" #include "movable_int.hpp" #include "dummy_test_allocator.hpp" #include "map_test.hpp" #include "propagate_allocator_test.hpp" #include "emplace_test.hpp" #include "../../intrusive/test/iterator_test.hpp" using namespace boost::container; typedef std::pair pair_t; class recursive_map { public: recursive_map & operator=(const recursive_map &x) { id_ = x.id_; map_ = x.map_; return *this; } int id_; map map_; map::iterator it_; map::const_iterator cit_; map::reverse_iterator rit_; map::const_reverse_iterator crit_; friend bool operator< (const recursive_map &a, const recursive_map &b) { return a.id_ < b.id_; } }; class recursive_multimap { public: recursive_multimap & operator=(const recursive_multimap &x) { id_ = x.id_; multimap_ = x.multimap_; return *this; } int id_; multimap multimap_; multimap::iterator it_; multimap::const_iterator cit_; multimap::reverse_iterator rit_; multimap::const_reverse_iterator crit_; friend bool operator< (const recursive_multimap &a, const recursive_multimap &b) { return a.id_ < b.id_; } }; template void test_move() { //Now test move semantics C original; original.emplace(); C move_ctor(boost::move(original)); C move_assign; move_assign.emplace(); move_assign = boost::move(move_ctor); move_assign.swap(original); } bool node_type_test() { using namespace boost::container; { typedef map map_type; map_type src; { test::movable_int mv_1(1), mv_2(2), mv_3(3), mv_11(11), mv_12(12), mv_13(13); src.try_emplace(boost::move(mv_1), boost::move(mv_11)); src.try_emplace(boost::move(mv_2), boost::move(mv_12)); src.try_emplace(boost::move(mv_3), boost::move(mv_13)); } if(src.size() != 3) return false; map_type dst; { test::movable_int mv_3(3), mv_33(33); dst.try_emplace(boost::move(mv_3), boost::move(mv_33)); } if(dst.size() != 1) return false; const test::movable_int mv_1(1); const test::movable_int mv_2(2); const test::movable_int mv_3(3); const test::movable_int mv_33(33); const test::movable_int mv_13(13); map_type::insert_return_type r; r = dst.insert(src.extract(mv_33)); // Key version, try to insert empty node if(! (r.position == dst.end() && r.inserted == false && r.node.empty()) ) return false; r = dst.insert(src.extract(src.find(mv_1))); // Iterator version, successful if(! (r.position == dst.find(mv_1) && r.inserted == true && r.node.empty()) ) return false; r = dst.insert(dst.begin(), src.extract(mv_2)); // Key type version, successful if(! (r.position == dst.find(mv_2) && r.inserted == true && r.node.empty()) ) return false; r = dst.insert(src.extract(mv_3)); // Key type version, unsuccessful if(!src.empty()) return false; if(dst.size() != 3) return false; if(! (r.position == dst.find(mv_3) && r.inserted == false && r.node.key() == mv_3 && r.node.mapped() == mv_13) ) return false; } { typedef multimap multimap_type; multimap_type src; { test::movable_int mv_1(1), mv_2(2), mv_3(3), mv_3bis(3), mv_11(11), mv_12(12), mv_13(13), mv_23(23); src.emplace(boost::move(mv_1), boost::move(mv_11)); src.emplace(boost::move(mv_2), boost::move(mv_12)); src.emplace(boost::move(mv_3), boost::move(mv_13)); src.emplace_hint(src.begin(), boost::move(mv_3bis), boost::move(mv_23)); } if(src.size() != 4) return false; multimap_type dst; { test::movable_int mv_3(3), mv_33(33); dst.emplace(boost::move(mv_3), boost::move(mv_33)); } if(dst.size() != 1) return false; const test::movable_int mv_1(1); const test::movable_int mv_2(2); const test::movable_int mv_3(3); const test::movable_int mv_4(4); const test::movable_int mv_33(33); const test::movable_int mv_13(13); const test::movable_int mv_23(23); multimap_type::iterator r; multimap_type::node_type nt(src.extract(mv_3)); r = dst.insert(dst.begin(), boost::move(nt)); if(! (r->first == mv_3 && r->second == mv_23 && dst.find(mv_3) == r && nt.empty()) ) return false; nt = src.extract(src.find(mv_1)); r = dst.insert(boost::move(nt)); // Iterator version, successful if(! (r->first == mv_1 && nt.empty()) ) return false; nt = src.extract(mv_2); r = dst.insert(boost::move(nt)); // Key type version, successful if(! (r->first == mv_2 && nt.empty()) ) return false; r = dst.insert(src.extract(mv_3)); // Key type version, successful if(! (r->first == mv_3 && r->second == mv_13 && r == --multimap_type::iterator(dst.upper_bound(mv_3)) && nt.empty()) ) return false; r = dst.insert(src.extract(mv_4)); // Key type version, unsuccessful if(! (r == dst.end()) ) return false; if(!src.empty()) return false; if(dst.size() != 5) return false; } return true; } template struct GetAllocatorMap { template struct apply { typedef map< ValueType , ValueType , std::less , typename allocator_traits ::template portable_rebind_alloc< std::pair >::type , typename boost::container::tree_assoc_options < boost::container::tree_type >::type > map_type; typedef multimap< ValueType , ValueType , std::less , typename allocator_traits ::template portable_rebind_alloc< std::pair >::type , typename boost::container::tree_assoc_options < boost::container::tree_type >::type > multimap_type; }; }; struct boost_container_map; struct boost_container_multimap; namespace boost { namespace container { namespace test { template<> struct alloc_propagate_base { template struct apply { typedef typename boost::container::allocator_traits:: template portable_rebind_alloc >::type TypeAllocator; typedef boost::container::map, TypeAllocator> type; }; }; template<> struct alloc_propagate_base { template struct apply { typedef typename boost::container::allocator_traits:: template portable_rebind_alloc >::type TypeAllocator; typedef boost::container::multimap, TypeAllocator> type; }; }; void test_merge_from_different_comparison() { map map1; map > map2; map1.merge(map2); } bool test_heterogeneous_lookups() { typedef map map_t; typedef multimap mmap_t; typedef map_t::value_type value_type; map_t map1; mmap_t mmap1; const map_t &cmap1 = map1; const mmap_t &cmmap1 = mmap1; if(!map1.insert_or_assign(1, 'a').second) return false; if( map1.insert_or_assign(1, 'b').second) return false; if(!map1.insert_or_assign(2, 'c').second) return false; if( map1.insert_or_assign(2, 'd').second) return false; if(!map1.insert_or_assign(3, 'e').second) return false; if(map1.insert_or_assign(1, 'a').second) return false; if(map1.insert_or_assign(1, 'b').second) return false; if(map1.insert_or_assign(2, 'c').second) return false; if(map1.insert_or_assign(2, 'd').second) return false; if(map1.insert_or_assign(3, 'e').second) return false; mmap1.insert(value_type(1, 'a')); mmap1.insert(value_type(1, 'b')); mmap1.insert(value_type(2, 'c')); mmap1.insert(value_type(2, 'd')); mmap1.insert(value_type(3, 'e')); const test::non_copymovable_int find_me(2); //find if(map1.find(find_me)->second != 'd') return false; if(cmap1.find(find_me)->second != 'd') return false; if(mmap1.find(find_me)->second != 'c') return false; if(cmmap1.find(find_me)->second != 'c') return false; //count if(map1.count(find_me) != 1) return false; if(cmap1.count(find_me) != 1) return false; if(mmap1.count(find_me) != 2) return false; if(cmmap1.count(find_me) != 2) return false; //contains if(!map1.contains(find_me)) return false; if(!cmap1.contains(find_me)) return false; if(!mmap1.contains(find_me)) return false; if(!cmmap1.contains(find_me)) return false; //lower_bound if(map1.lower_bound(find_me)->second != 'd') return false; if(cmap1.lower_bound(find_me)->second != 'd') return false; if(mmap1.lower_bound(find_me)->second != 'c') return false; if(cmmap1.lower_bound(find_me)->second != 'c') return false; //upper_bound if(map1.upper_bound(find_me)->second != 'e') return false; if(cmap1.upper_bound(find_me)->second != 'e') return false; if(mmap1.upper_bound(find_me)->second != 'e') return false; if(cmmap1.upper_bound(find_me)->second != 'e') return false; //equal_range if(map1.equal_range(find_me).first->second != 'd') return false; if(cmap1.equal_range(find_me).second->second != 'e') return false; if(mmap1.equal_range(find_me).first->second != 'c') return false; if(cmmap1.equal_range(find_me).second->second != 'e') return false; return true; } bool constructor_template_auto_deduction_test() { #ifndef BOOST_CONTAINER_NO_CXX17_CTAD using namespace boost::container; const std::size_t NumElements = 100; { std::map int_map; for(std::size_t i = 0; i != NumElements; ++i){ int_map.insert(std::map::value_type(static_cast(i), static_cast(i))); } std::multimap int_mmap; for (std::size_t i = 0; i != NumElements; ++i) { int_mmap.insert(std::multimap::value_type(static_cast(i), static_cast(i))); } typedef std::less comp_int_t; typedef std::allocator > alloc_pair_int_t; //range { auto fmap = map(int_map.begin(), int_map.end()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(int_mmap.begin(), int_mmap.end()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } //range+comp { auto fmap = map(int_map.begin(), int_map.end(), comp_int_t()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(int_mmap.begin(), int_mmap.end(), comp_int_t()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } //range+comp+alloc { auto fmap = map(int_map.begin(), int_map.end(), comp_int_t(), alloc_pair_int_t()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(int_mmap.begin(), int_mmap.end(), comp_int_t(), alloc_pair_int_t()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } //range+alloc { auto fmap = map(int_map.begin(), int_map.end(), alloc_pair_int_t()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(int_mmap.begin(), int_mmap.end(), alloc_pair_int_t()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } //ordered_unique_range / ordered_range //range { auto fmap = map(ordered_unique_range, int_map.begin(), int_map.end()); if(!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(ordered_range, int_mmap.begin(), int_mmap.end()); if(!CheckEqualContainers(int_mmap, fmmap)) return false; } //range+comp { auto fmap = map(ordered_unique_range, int_map.begin(), int_map.end(), comp_int_t()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(ordered_range, int_mmap.begin(), int_mmap.end(), comp_int_t()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } //range+comp+alloc { auto fmap = map(ordered_unique_range, int_map.begin(), int_map.end(), comp_int_t(), alloc_pair_int_t()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(ordered_range, int_mmap.begin(), int_mmap.end(), comp_int_t(), alloc_pair_int_t()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } //range+alloc { auto fmap = map(ordered_unique_range, int_map.begin(), int_map.end(),alloc_pair_int_t()); if (!CheckEqualContainers(int_map, fmap)) return false; auto fmmap = multimap(ordered_range, int_mmap.begin(), int_mmap.end(),alloc_pair_int_t()); if (!CheckEqualContainers(int_mmap, fmmap)) return false; } } #endif return true; } }}} //namespace boost::container::test int main () { //Recursive container instantiation { map map_; multimap multimap_; } //Allocator argument container { map map_((map::allocator_type())); multimap multimap_((multimap::allocator_type())); } //Now test move semantics { test_move >(); test_move >(); } //Test std::pair value type as tree has workarounds to make old std::pair //implementations movable that can break things { boost::container::map s; std::pair p; s.insert(p); s.emplace(p); } //////////////////////////////////// // Testing allocator implementations //////////////////////////////////// { typedef std::map MyStdMap; typedef std::multimap MyStdMultiMap; if (0 != test::map_test < GetAllocatorMap, red_black_tree>::apply::map_type , MyStdMap , GetAllocatorMap, red_black_tree>::apply::multimap_type , MyStdMultiMap>()) { std::cout << "Error in map_test, red_black_tree>" << std::endl; return 1; } if (0 != test::map_test < GetAllocatorMap, avl_tree>::apply::map_type , MyStdMap , GetAllocatorMap, avl_tree>::apply::multimap_type , MyStdMultiMap>()) { std::cout << "Error in map_test, avl_tree>" << std::endl; return 1; } if (0 != test::map_test < GetAllocatorMap, scapegoat_tree>::apply::map_type , MyStdMap , GetAllocatorMap, scapegoat_tree>::apply::multimap_type , MyStdMultiMap>()) { std::cout << "Error in map_test, scapegoat_tree>" << std::endl; return 1; } /////////// if (0 != test::map_test < GetAllocatorMap, splay_tree>::apply::map_type , MyStdMap , GetAllocatorMap, splay_tree>::apply::multimap_type , MyStdMultiMap>()) { std::cout << "Error in map_test, splay_tree>" << std::endl; return 1; } if (0 != test::map_test < GetAllocatorMap, red_black_tree>::apply::map_type , MyStdMap , GetAllocatorMap, red_black_tree>::apply::multimap_type , MyStdMultiMap>()) { std::cout << "Error in map_test, red_black_tree>" << std::endl; return 1; } if (0 != test::map_test < GetAllocatorMap, red_black_tree>::apply::map_type , MyStdMap , GetAllocatorMap, red_black_tree>::apply::multimap_type , MyStdMultiMap>()) { std::cout << "Error in map_test, red_black_tree>" << std::endl; return 1; } } //////////////////////////////////// // Emplace testing //////////////////////////////////// const test::EmplaceOptions MapOptions = (test::EmplaceOptions)(test::EMPLACE_HINT_PAIR | test::EMPLACE_ASSOC_PAIR); if(!boost::container::test::test_emplace, MapOptions>()) return 1; if(!boost::container::test::test_emplace, MapOptions>()) return 1; //////////////////////////////////// // Allocator propagation testing //////////////////////////////////// if(!boost::container::test::test_propagate_allocator()) return 1; if(!boost::container::test::test_propagate_allocator()) return 1; if (!boost::container::test::test_map_support_for_initialization_list_for >()) return 1; if (!boost::container::test::test_map_support_for_initialization_list_for >()) return 1; //////////////////////////////////// // Iterator testing //////////////////////////////////// { typedef boost::container::map cont_int; cont_int a; a.insert(cont_int::value_type(0, 9)); a.insert(cont_int::value_type(1, 9)); a.insert(cont_int::value_type(2, 9)); boost::intrusive::test::test_iterator_bidirectional< cont_int >(a); if(boost::report_errors() != 0) { return 1; } } { typedef boost::container::multimap cont_int; cont_int a; a.insert(cont_int::value_type(0, 9)); a.insert(cont_int::value_type(1, 9)); a.insert(cont_int::value_type(2, 9)); boost::intrusive::test::test_iterator_bidirectional< cont_int >(a); if(boost::report_errors() != 0) { return 1; } } //////////////////////////////////// // Node extraction/insertion testing functions //////////////////////////////////// if(!node_type_test()) return 1; //////////////////////////////////// // Constructor Template Auto Deduction test //////////////////////////////////// if (!test::constructor_template_auto_deduction_test()) { return 1; } if (!boost::container::test::instantiate_constructors, multimap >()) return 1; test::test_merge_from_different_comparison(); if(!test::test_heterogeneous_lookups()) return 1; //////////////////////////////////// // Test optimize_size option //////////////////////////////////// // // map // typedef map< int*, int*, std::less, std::allocator< std::pair > , tree_assoc_options< optimize_size, tree_type >::type > rbmap_size_optimized_no; typedef map< int*, int*, std::less, std::allocator< std::pair > , tree_assoc_options< optimize_size, tree_type >::type > avlmap_size_optimized_yes; // // multimap // typedef multimap< int*, int*, std::less, std::allocator< std::pair > , tree_assoc_options< optimize_size, tree_type >::type > rbmmap_size_optimized_yes; typedef multimap< int*, int*, std::less, std::allocator< std::pair > , tree_assoc_options< optimize_size, tree_type >::type > avlmmap_size_optimized_no; BOOST_STATIC_ASSERT(sizeof(rbmmap_size_optimized_yes) < sizeof(rbmap_size_optimized_no)); BOOST_STATIC_ASSERT(sizeof(avlmap_size_optimized_yes) < sizeof(avlmmap_size_optimized_no)); //////////////////////////////////// // has_trivial_destructor_after_move testing //////////////////////////////////// { typedef std::pair value_type; // // map // // default allocator { typedef boost::container::map cont; typedef boost::container::dtl::tree, void, void> tree; if (boost::has_trivial_destructor_after_move::value != boost::has_trivial_destructor_after_move::value) { std::cerr << "has_trivial_destructor_after_move(map, default allocator) test failed" << std::endl; return 1; } } // std::allocator { typedef boost::container::map, std::allocator > cont; typedef boost::container::dtl::tree, std::allocator, void> tree; if (boost::has_trivial_destructor_after_move::value != boost::has_trivial_destructor_after_move::value) { std::cerr << "has_trivial_destructor_after_move(map, std::allocator) test failed" << std::endl; return 1; } } // // multimap // // default allocator { // default allocator typedef boost::container::multimap cont; typedef boost::container::dtl::tree, void, void> tree; if (boost::has_trivial_destructor_after_move::value != boost::has_trivial_destructor_after_move::value) { std::cerr << "has_trivial_destructor_after_move(multimap, default allocator) test failed" << std::endl; return 1; } } // std::allocator { typedef boost::container::multimap, std::allocator > cont; typedef boost::container::dtl::tree, std::allocator, void> tree; if (boost::has_trivial_destructor_after_move::value != boost::has_trivial_destructor_after_move::value) { std::cerr << "has_trivial_destructor_after_move(multimap, std::allocator) test failed" << std::endl; return 1; } } } return 0; } #include