/////////////////////////////////////////////////////////////// // Copyright 2018 Nick Thompson. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt /*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers. In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers. */ //[complex128_eg #include #include #include template void complex_number_examples() { Complex z1{0, 1}; std::cout << std::setprecision(std::numeric_limits::digits10); std::cout << std::scientific << std::fixed; std::cout << "Print a complex number: " << z1 << std::endl; std::cout << "Square it : " << z1*z1 << std::endl; std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl; std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl; using std::abs; std::cout << "Absolute value : " << abs(z1) << std::endl; std::cout << "Argument : " << arg(z1) << std::endl; std::cout << "Norm : " << norm(z1) << std::endl; std::cout << "Complex conjugate : " << conj(z1) << std::endl; std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl; typename Complex::value_type r = 1; typename Complex::value_type theta = 0.8; using std::polar; std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl; std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl; std::cout << "\nElementary special functions:\n"; using std::exp; std::cout << "exp(z1) = " << exp(z1) << std::endl; using std::log; std::cout << "log(z1) = " << log(z1) << std::endl; using std::log10; std::cout << "log10(z1) = " << log10(z1) << std::endl; using std::pow; std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl; using std::sqrt; std::cout << "Take its square root : " << sqrt(z1) << std::endl; using std::sin; std::cout << "sin(z1) = " << sin(z1) << std::endl; using std::cos; std::cout << "cos(z1) = " << cos(z1) << std::endl; using std::tan; std::cout << "tan(z1) = " << tan(z1) << std::endl; using std::asin; std::cout << "asin(z1) = " << asin(z1) << std::endl; using std::acos; std::cout << "acos(z1) = " << acos(z1) << std::endl; using std::atan; std::cout << "atan(z1) = " << atan(z1) << std::endl; using std::sinh; std::cout << "sinh(z1) = " << sinh(z1) << std::endl; using std::cosh; std::cout << "cosh(z1) = " << cosh(z1) << std::endl; using std::tanh; std::cout << "tanh(z1) = " << tanh(z1) << std::endl; using std::asinh; std::cout << "asinh(z1) = " << asinh(z1) << std::endl; using std::acosh; std::cout << "acosh(z1) = " << acosh(z1) << std::endl; using std::atanh; std::cout << "atanh(z1) = " << atanh(z1) << std::endl; } int main() { std::cout << "First, some operations we usually perform with std::complex:\n"; complex_number_examples>(); std::cout << "\nNow the same operations performed using quad precision complex numbers:\n"; complex_number_examples(); return 0; } //] /* //[complex128_out Print a complex number: (0.000000000000000000000000000000000,1.000000000000000000000000000000000) Square it : -1.000000000000000000000000000000000 Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000 Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000 Absolute value : 1.000000000000000000000000000000000 Argument : 1.570796326794896619231321691639751 Norm : 1.000000000000000000000000000000000 Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000) Projection onto Riemann sphere: (0.000000000000000000000000000000000,1.000000000000000000000000000000000) Polar coordinates (phase = 0) : 1.000000000000000000000000000000000 Polar coordinates (phase !=0) : (0.696706709347165389063740022772449,0.717356090899522792567167815703377) Elementary special functions: exp(z1) = (0.540302305868139717400936607442977,0.841470984807896506652502321630299) log(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751) log10(z1) = (0.000000000000000000000000000000000,0.682188176920920673742891812715678) pow(z1, z1) = 0.207879576350761908546955619834979 Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849) sin(z1) = (0.000000000000000000000000000000000,1.175201193643801456882381850595601) cos(z1) = 1.543080634815243778477905620757061 tan(z1) = (0.000000000000000000000000000000000,0.761594155955764888119458282604794) asin(z1) = (0.000000000000000000000000000000000,0.881373587019543025232609324979792) acos(z1) = (1.570796326794896619231321691639751,-0.881373587019543025232609324979792) atan(z1) = (0.000000000000000000000000000000000,inf) sinh(z1) = (0.000000000000000000000000000000000,0.841470984807896506652502321630299) cosh(z1) = 0.540302305868139717400936607442977 tanh(z1) = (0.000000000000000000000000000000000,1.557407724654902230506974807458360) asinh(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751) acosh(z1) = (0.881373587019543025232609324979792,1.570796326794896619231321691639751) atanh(z1) = (0.000000000000000000000000000000000,0.785398163397448309615660845819876) //] */