// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #include "test6.hpp" // Test matrix expression templates template struct test_my_matrix { typedef typename M::value_type value_type; template void test_with (MP &m1, MP &m2, MP &m3) const { { value_type t; // Default Construct default_construct::test (); // Copy and swap initialize_matrix (m1); initialize_matrix (m2); m1 = m2; std::cout << "m1 = m2 = " << m1 << std::endl; m1.assign_temporary (m2); std::cout << "m1.assign_temporary (m2) = " << m1 << std::endl; m1.swap (m2); std::cout << "m1.swap (m2) = " << m1 << " " << m2 << std::endl; // Zero assignment m1 = ublas::zero_matrix<> (m1.size1 (), m1.size2 ()); std::cout << "m1.zero_matrix = " << m1 << std::endl; m1 = m2; // Unary matrix operations resulting in a matrix initialize_matrix (m1); m2 = - m1; std::cout << "- m1 = " << m2 << std::endl; m2 = ublas::conj (m1); std::cout << "conj (m1) = " << m2 << std::endl; // Binary matrix operations resulting in a matrix initialize_matrix (m1); initialize_matrix (m2); m3 = m1 + m2; std::cout << "m1 + m2 = " << m3 << std::endl; m3 = m1 - m2; std::cout << "m1 - m2 = " << m3 << std::endl; // Scaling a matrix t = N; initialize_matrix (m1); m2 = value_type (1.) * m1; std::cout << "1. * m1 = " << m2 << std::endl; m2 = t * m1; std::cout << "N * m1 = " << m2 << std::endl; initialize_matrix (m1); m2 = m1 * value_type (1.); std::cout << "m1 * 1. = " << m2 << std::endl; m2 = m1 * t; std::cout << "m1 * N = " << m2 << std::endl; // Some assignments initialize_matrix (m1); initialize_matrix (m2); m2 += m1; std::cout << "m2 += m1 = " << m2 << std::endl; m2 -= m1; std::cout << "m2 -= m1 = " << m2 << std::endl; m2 = m2 + m1; std::cout << "m2 = m2 + m1 = " << m2 << std::endl; m2 = m2 - m1; std::cout << "m2 = m1 - m1 = " << m2 << std::endl; m1 *= value_type (1.); std::cout << "m1 *= 1. = " << m1 << std::endl; m1 *= t; std::cout << "m1 *= N = " << m1 << std::endl; // Transpose initialize_matrix (m1); m2 = ublas::trans (m1); std::cout << "trans (m1) = " << m2 << std::endl; // Hermitean initialize_matrix (m1); m2 = ublas::herm (m1); std::cout << "herm (m1) = " << m2 << std::endl; // Matrix multiplication initialize_matrix (m1); initialize_matrix (m2); m3 = ublas::prod (m1, m2); std::cout << "prod (m1, m2) = " << m3 << std::endl; } } void operator () () const { { M m1 (N, N), m2 (N, N), m3 (N, N); test_with (m1, m2, m3); #ifdef USE_RANGE ublas::matrix_range mr1 (m1, ublas::range (0, N), ublas::range (0, N)), mr2 (m2, ublas::range (0, N), ublas::range (0, N)), mr3 (m3, ublas::range (0, N), ublas::range (0, N)); test_with (mr1, mr2, mr3); #endif #ifdef USE_SLICE ublas::matrix_slice ms1 (m1, ublas::slice (0, 1, N), ublas::slice (0, 1, N)), ms2 (m2, ublas::slice (0, 1, N), ublas::slice (0, 1, N)), ms3 (m3, ublas::slice (0, 1, N), ublas::slice (0, 1, N)); test_with (ms1, ms2, ms3); #endif } #ifdef USE_ADAPTOR { M m1 (N, N), m2 (N, N), m3 (N, N); ublas::symmetric_adaptor sam1 (m1), sam2 (m2), sam3 (m3); test_with (sam1, sam2, sam3); #ifdef USE_RANGE ublas::matrix_range > mr1 (sam1, ublas::range (0, N), ublas::range (0, N)), mr2 (sam2, ublas::range (0, N), ublas::range (0, N)), mr3 (sam3, ublas::range (0, N), ublas::range (0, N)); test_with (mr1, mr2, mr3); #endif #ifdef USE_SLICE ublas::matrix_slice > ms1 (sam1, ublas::slice (0, 1, N), ublas::slice (0, 1, N)), ms2 (sam2, ublas::slice (0, 1, N), ublas::slice (0, 1, N)), ms3 (sam3, ublas::slice (0, 1, N), ublas::slice (0, 1, N)); test_with (ms1, ms2, ms3); #endif } #endif } }; // Test matrix void test_matrix () { std::cout << "test_matrix" << std::endl; #ifdef USE_BOUNDED_ARRAY #ifdef USE_FLOAT std::cout << "float, bounded_array" << std::endl; test_my_matrix >, 3 > () (); #endif #ifdef USE_DOUBLE std::cout << "double, bounded_array" << std::endl; test_my_matrix >, 3 > () (); #endif #ifdef USE_STD_COMPLEX #ifdef USE_FLOAT std::cout << "std::complex, bounded_array" << std::endl; test_my_matrix, ublas::lower, ublas::row_major, ublas::bounded_array, 3 * 3> >, 3 > () (); #endif #ifdef USE_DOUBLE std::cout << "std::complex, bounded_array" << std::endl; test_my_matrix, ublas::lower, ublas::row_major, ublas::bounded_array, 3 * 3> >, 3 > () (); #endif #endif #endif #ifdef USE_UNBOUNDED_ARRAY #ifdef USE_FLOAT std::cout << "float, unbounded_array" << std::endl; test_my_matrix >, 3 > () (); #endif #ifdef USE_DOUBLE std::cout << "double, unbounded_array" << std::endl; test_my_matrix >, 3 > () (); #endif #ifdef USE_STD_COMPLEX #ifdef USE_FLOAT std::cout << "std::complex, unbounded_array" << std::endl; test_my_matrix, ublas::lower, ublas::row_major, ublas::unbounded_array > >, 3 > () (); #endif #ifdef USE_DOUBLE std::cout << "std::complex, unbounded_array" << std::endl; test_my_matrix, ublas::lower, ublas::row_major, ublas::unbounded_array > >, 3 > () (); #endif #endif #endif #ifdef USE_STD_VECTOR #ifdef USE_FLOAT std::cout << "float, std::vector" << std::endl; test_my_matrix >, 3 > () (); #endif #ifdef USE_DOUBLE std::cout << "double, std::vector" << std::endl; test_my_matrix >, 3 > () (); #endif #ifdef USE_STD_COMPLEX #ifdef USE_FLOAT std::cout << "std::complex, std::vector" << std::endl; test_my_matrix, ublas::lower, ublas::row_major, std::vector > >, 3 > () (); #endif #ifdef USE_DOUBLE std::cout << "std::complex, std::vector" << std::endl; test_my_matrix, ublas::lower, ublas::row_major, std::vector > >, 3 > () (); #endif #endif #endif }