[/ (C) Copyright Edward Diener 2011-2015 Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). ] [section:vmd_sequence_access Accessing a sequence element] It is possible to access an individual element of a sequence. The macro to do this is called BOOST_VMD_ELEM. The macro takes two required parameters. The required parameters are the element number to access and the sequence, in that order. The element number is a 0-based number and its maximum value should be one less than the size of the sequence. The BOOST_VMD_ELEM macro returns the actual sequence element. If the first required parameter is greater or equal to the size of the sequence the macro returns emptiness. Because of this using BOOST_VMD_ELEM on an empty sequence, whose size is 0, always returns emptiness. #include #define BOOST_VMD_REGISTER_ANAME (ANAME) #define A_SEQUENCE (1,2,3) 46 (list_data1,(list_data2,BOOST_PP_NIL)) BOOST_VMD_TYPE_SEQ ANAME #define AN_EMPTY_SEQUENCE BOOST_VMD_ELEM(0,A_SEQUENCE) will return (1,2,3) BOOST_VMD_ELEM(1,A_SEQUENCE) will return 46 BOOST_VMD_ELEM(2,A_SEQUENCE) will return (list_data1,(list_data2,BOOST_PP_NIL)) BOOST_VMD_ELEM(3,A_SEQUENCE) will return BOOST_VMD_TYPE_SEQ BOOST_VMD_ELEM(4,A_SEQUENCE) will return ANAME BOOST_VMD_ELEM(5,A_SEQUENCE) will return emptiness BOOST_VMD_ELEM(0,AN_EMPTY_SEQUENCE) will return emptiness Accessing an element of a sequence directly is slower than accessing an element of a Boost PP data type or even variadic data, since each access has to directly cycle through each element of the sequence to get to the one being accessed. The process of sequentially parsing each element again each time is slower than accessing a Boost PP data type element. [heading Usage] You can use the general header file: #include or you can use the individual header file: #include [endsect]