// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #include #include #include "DetourNavMesh.h" #include "DetourNode.h" #include "DetourCommon.h" #include "DetourMath.h" #include "DetourAlloc.h" #include "DetourAssert.h" #include inline bool overlapSlabs(const float* amin, const float* amax, const float* bmin, const float* bmax, const float px, const float py) { // Check for horizontal overlap. // The segment is shrunken a little so that slabs which touch // at end points are not connected. const float minx = dtMax(amin[0]+px,bmin[0]+px); const float maxx = dtMin(amax[0]-px,bmax[0]-px); if (minx > maxx) return false; // Check vertical overlap. const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]); const float ak = amin[1] - ad*amin[0]; const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]); const float bk = bmin[1] - bd*bmin[0]; const float aminy = ad*minx + ak; const float amaxy = ad*maxx + ak; const float bminy = bd*minx + bk; const float bmaxy = bd*maxx + bk; const float dmin = bminy - aminy; const float dmax = bmaxy - amaxy; // Crossing segments always overlap. if (dmin*dmax < 0) return true; // Check for overlap at endpoints. const float thr = dtSqr(py*2); if (dmin*dmin <= thr || dmax*dmax <= thr) return true; return false; } static float getSlabCoord(const float* va, const int side) { if (side == 0 || side == 4) return va[0]; else if (side == 2 || side == 6) return va[2]; return 0; } static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side) { if (side == 0 || side == 4) { if (va[2] < vb[2]) { bmin[0] = va[2]; bmin[1] = va[1]; bmax[0] = vb[2]; bmax[1] = vb[1]; } else { bmin[0] = vb[2]; bmin[1] = vb[1]; bmax[0] = va[2]; bmax[1] = va[1]; } } else if (side == 2 || side == 6) { if (va[0] < vb[0]) { bmin[0] = va[0]; bmin[1] = va[1]; bmax[0] = vb[0]; bmax[1] = vb[1]; } else { bmin[0] = vb[0]; bmin[1] = vb[1]; bmax[0] = va[0]; bmax[1] = va[1]; } } } inline int computeTileHash(int x, int y, const int mask) { const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes unsigned int n = h1 * x + h2 * y; return (int)(n & mask); } inline unsigned int allocLink(dtMeshTile* tile) { if (tile->linksFreeList == DT_NULL_LINK) return DT_NULL_LINK; unsigned int link = tile->linksFreeList; tile->linksFreeList = tile->links[link].next; return link; } inline void freeLink(dtMeshTile* tile, unsigned int link) { tile->links[link].next = tile->linksFreeList; tile->linksFreeList = link; } dtNavMesh* dtAllocNavMesh() { void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM); if (!mem) return 0; return new(mem) dtNavMesh; } /// @par /// /// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA /// flag set. void dtFreeNavMesh(dtNavMesh* navmesh) { if (!navmesh) return; navmesh->~dtNavMesh(); dtFree(navmesh); } ////////////////////////////////////////////////////////////////////////////////////////// /** @class dtNavMesh The navigation mesh consists of one or more tiles defining three primary types of structural data: A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.) A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.) Off-mesh connections, which define custom point-to-point edges within the navigation graph. The general build process is as follows: -# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline. -# Optionally, create off-mesh connection data. -# Combine the source data into a dtNavMeshCreateParams structure. -# Create a tile data array using dtCreateNavMeshData(). -# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes, the tile data is loaded during this step.) -# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile(). Notes: - This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding. - Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized to have only a single tile. - This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will always contain either a success or failure flag. @see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh */ dtNavMesh::dtNavMesh() : m_tileWidth(0), m_tileHeight(0), m_maxTiles(0), m_tileLutSize(0), m_tileLutMask(0), m_posLookup(0), m_nextFree(0), m_tiles(0) { #ifndef DT_POLYREF64 m_saltBits = 0; m_tileBits = 0; m_polyBits = 0; #endif memset(&m_params, 0, sizeof(dtNavMeshParams)); m_orig[0] = 0; m_orig[1] = 0; m_orig[2] = 0; } dtNavMesh::~dtNavMesh() { for (int i = 0; i < m_maxTiles; ++i) { if (m_tiles[i].flags & DT_TILE_FREE_DATA) { dtFree(m_tiles[i].data); m_tiles[i].data = 0; m_tiles[i].dataSize = 0; } } dtFree(m_posLookup); dtFree(m_tiles); } dtStatus dtNavMesh::init(const dtNavMeshParams* params) { memcpy(&m_params, params, sizeof(dtNavMeshParams)); dtVcopy(m_orig, params->orig); m_tileWidth = params->tileWidth; m_tileHeight = params->tileHeight; // Init tiles m_maxTiles = params->maxTiles; m_tileLutSize = dtNextPow2(params->maxTiles/4); if (!m_tileLutSize) m_tileLutSize = 1; m_tileLutMask = m_tileLutSize-1; m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); if (!m_tiles) return DT_FAILURE | DT_OUT_OF_MEMORY; m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); if (!m_posLookup) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); m_nextFree = 0; for (int i = m_maxTiles-1; i >= 0; --i) { m_tiles[i].salt = 1; m_tiles[i].next = m_nextFree; m_nextFree = &m_tiles[i]; } // Init ID generator values. #ifndef DT_POLYREF64 m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles)); m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys)); // Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow. m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits); if (m_saltBits < 10) return DT_FAILURE | DT_INVALID_PARAM; #endif return DT_SUCCESS; } dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return DT_FAILURE | DT_WRONG_MAGIC; if (header->version != DT_NAVMESH_VERSION) return DT_FAILURE | DT_WRONG_VERSION; dtNavMeshParams params; dtVcopy(params.orig, header->bmin); params.tileWidth = header->bmax[0] - header->bmin[0]; params.tileHeight = header->bmax[2] - header->bmin[2]; params.maxTiles = 1; params.maxPolys = header->polyCount; dtStatus status = init(¶ms); if (dtStatusFailed(status)) return status; return addTile(data, dataSize, flags, 0, 0); } /// @par /// /// @note The parameters are created automatically when the single tile /// initialization is performed. const dtNavMeshParams* dtNavMesh::getParams() const { return &m_params; } ////////////////////////////////////////////////////////////////////////////////////////// int dtNavMesh::findConnectingPolys(const float* va, const float* vb, const dtMeshTile* tile, int side, dtPolyRef* con, float* conarea, int maxcon) const { if (!tile) return 0; float amin[2], amax[2]; calcSlabEndPoints(va, vb, amin, amax, side); const float apos = getSlabCoord(va, side); // Remove links pointing to 'side' and compact the links array. float bmin[2], bmax[2]; unsigned short m = DT_EXT_LINK | (unsigned short)side; int n = 0; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip edges which do not point to the right side. if (poly->neis[j] != m) continue; const float* vc = &tile->verts[poly->verts[j]*3]; const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; const float bpos = getSlabCoord(vc, side); // Segments are not close enough. if (dtAbs(apos-bpos) > 0.01f) continue; // Check if the segments touch. calcSlabEndPoints(vc,vd, bmin,bmax, side); if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; // Add return value. if (n < maxcon) { conarea[n*2+0] = dtMax(amin[0], bmin[0]); conarea[n*2+1] = dtMin(amax[0], bmax[0]); con[n] = base | (dtPolyRef)i; n++; } break; } } return n; } void dtNavMesh::unconnectLinks(dtMeshTile* tile, dtMeshTile* target) { if (!tile || !target) return; const unsigned int targetNum = decodePolyIdTile(getTileRef(target)); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; unsigned int j = poly->firstLink; unsigned int pj = DT_NULL_LINK; while (j != DT_NULL_LINK) { if (decodePolyIdTile(tile->links[j].ref) == targetNum) { // Remove link. unsigned int nj = tile->links[j].next; if (pj == DT_NULL_LINK) poly->firstLink = nj; else tile->links[pj].next = nj; freeLink(tile, j); j = nj; } else { // Advance pj = j; j = tile->links[j].next; } } } } void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side) { if (!tile) return; // Connect border links. for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; // Create new links. // unsigned short m = DT_EXT_LINK | (unsigned short)side; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip non-portal edges. if ((poly->neis[j] & DT_EXT_LINK) == 0) continue; const int dir = (int)(poly->neis[j] & 0xff); if (side != -1 && dir != side) continue; // Create new links const float* va = &tile->verts[poly->verts[j]*3]; const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3]; dtPolyRef nei[4]; float neia[4*2]; int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4); for (int k = 0; k < nnei; ++k) { unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = nei[k]; link->edge = (unsigned char)j; link->side = (unsigned char)dir; link->next = poly->firstLink; poly->firstLink = idx; // Compress portal limits to a byte value. if (dir == 0 || dir == 4) { float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]); float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]); if (tmin > tmax) dtSwap(tmin,tmax); link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); } else if (dir == 2 || dir == 6) { float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]); float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]); if (tmin > tmax) dtSwap(tmin,tmax); link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); } } } } } } void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side) { if (!tile) return; // Connect off-mesh links. // We are interested on links which land from target tile to this tile. const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side); for (int i = 0; i < target->header->offMeshConCount; ++i) { dtOffMeshConnection* targetCon = &target->offMeshCons[i]; if (targetCon->side != oppositeSide) continue; dtPoly* targetPoly = &target->polys[targetCon->poly]; // Skip off-mesh connections which start location could not be connected at all. if (targetPoly->firstLink == DT_NULL_LINK) continue; const float halfExtents[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad }; // Find polygon to connect to. const float* p = &targetCon->pos[3]; float nearestPt[3]; dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt); if (!ref) continue; // findNearestPoly may return too optimistic results, further check to make sure. if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad)) continue; // Make sure the location is on current mesh. float* v = &target->verts[targetPoly->verts[1]*3]; dtVcopy(v, nearestPt); // Link off-mesh connection to target poly. unsigned int idx = allocLink(target); if (idx != DT_NULL_LINK) { dtLink* link = &target->links[idx]; link->ref = ref; link->edge = (unsigned char)1; link->side = oppositeSide; link->bmin = link->bmax = 0; // Add to linked list. link->next = targetPoly->firstLink; targetPoly->firstLink = idx; } // Link target poly to off-mesh connection. if (targetCon->flags & DT_OFFMESH_CON_BIDIR) { unsigned int tidx = allocLink(tile); if (tidx != DT_NULL_LINK) { const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); dtPoly* landPoly = &tile->polys[landPolyIdx]; dtLink* link = &tile->links[tidx]; link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly); link->edge = 0xff; link->side = (unsigned char)(side == -1 ? 0xff : side); link->bmin = link->bmax = 0; // Add to linked list. link->next = landPoly->firstLink; landPoly->firstLink = tidx; } } } } void dtNavMesh::connectIntLinks(dtMeshTile* tile) { if (!tile) return; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; poly->firstLink = DT_NULL_LINK; if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Build edge links backwards so that the links will be // in the linked list from lowest index to highest. for (int j = poly->vertCount-1; j >= 0; --j) { // Skip hard and non-internal edges. if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue; unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = base | (dtPolyRef)(poly->neis[j]-1); link->edge = (unsigned char)j; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = poly->firstLink; poly->firstLink = idx; } } } } void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile) { if (!tile) return; dtPolyRef base = getPolyRefBase(tile); // Base off-mesh connection start points. for (int i = 0; i < tile->header->offMeshConCount; ++i) { dtOffMeshConnection* con = &tile->offMeshCons[i]; dtPoly* poly = &tile->polys[con->poly]; const float halfExtents[3] = { con->rad, tile->header->walkableClimb, con->rad }; // Find polygon to connect to. const float* p = &con->pos[0]; // First vertex float nearestPt[3]; dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt); if (!ref) continue; // findNearestPoly may return too optimistic results, further check to make sure. if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad)) continue; // Make sure the location is on current mesh. float* v = &tile->verts[poly->verts[0]*3]; dtVcopy(v, nearestPt); // Link off-mesh connection to target poly. unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = ref; link->edge = (unsigned char)0; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = poly->firstLink; poly->firstLink = idx; } // Start end-point is always connect back to off-mesh connection. unsigned int tidx = allocLink(tile); if (tidx != DT_NULL_LINK) { const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); dtPoly* landPoly = &tile->polys[landPolyIdx]; dtLink* link = &tile->links[tidx]; link->ref = base | (dtPolyRef)(con->poly); link->edge = 0xff; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = landPoly->firstLink; landPoly->firstLink = tidx; } } } namespace { template void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest) { const unsigned int ip = (unsigned int)(poly - tile->polys); const dtPolyDetail* pd = &tile->detailMeshes[ip]; float dmin = FLT_MAX; float tmin = 0; const float* pmin = 0; const float* pmax = 0; for (int i = 0; i < pd->triCount; i++) { const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4]; const int ANY_BOUNDARY_EDGE = (DT_DETAIL_EDGE_BOUNDARY << 0) | (DT_DETAIL_EDGE_BOUNDARY << 2) | (DT_DETAIL_EDGE_BOUNDARY << 4); if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0) continue; const float* v[3]; for (int j = 0; j < 3; ++j) { if (tris[j] < poly->vertCount) v[j] = &tile->verts[poly->verts[tris[j]] * 3]; else v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3]; } for (int k = 0, j = 2; k < 3; j = k++) { if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 && (onlyBoundary || tris[j] < tris[k])) { // Only looking at boundary edges and this is internal, or // this is an inner edge that we will see again or have already seen. continue; } float t; float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t); if (d < dmin) { dmin = d; tmin = t; pmin = v[j]; pmax = v[k]; } } } dtVlerp(closest, pmin, pmax, tmin); } } bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const { // Off-mesh connections do not have detail polys and getting height // over them does not make sense. if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) return false; const unsigned int ip = (unsigned int)(poly - tile->polys); const dtPolyDetail* pd = &tile->detailMeshes[ip]; float verts[DT_VERTS_PER_POLYGON*3]; const int nv = poly->vertCount; for (int i = 0; i < nv; ++i) dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]); if (!dtPointInPolygon(pos, verts, nv)) return false; if (!height) return true; // Find height at the location. for (int j = 0; j < pd->triCount; ++j) { const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; const float* v[3]; for (int k = 0; k < 3; ++k) { if (t[k] < poly->vertCount) v[k] = &tile->verts[poly->verts[t[k]]*3]; else v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; } float h; if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) { *height = h; return true; } } // If all triangle checks failed above (can happen with degenerate triangles // or larger floating point values) the point is on an edge, so just select // closest. This should almost never happen so the extra iteration here is // ok. float closest[3]; closestPointOnDetailEdges(tile, poly, pos, closest); *height = closest[1]; return true; } void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const { const dtMeshTile* tile = 0; const dtPoly* poly = 0; getTileAndPolyByRefUnsafe(ref, &tile, &poly); dtVcopy(closest, pos); if (getPolyHeight(tile, poly, pos, &closest[1])) { if (posOverPoly) *posOverPoly = true; return; } if (posOverPoly) *posOverPoly = false; // Off-mesh connections don't have detail polygons. if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) { const float* v0 = &tile->verts[poly->verts[0]*3]; const float* v1 = &tile->verts[poly->verts[1]*3]; float t; dtDistancePtSegSqr2D(pos, v0, v1, t); dtVlerp(closest, v0, v1, t); return; } // Outside poly that is not an offmesh connection. closestPointOnDetailEdges(tile, poly, pos, closest); } dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, const float* center, const float* halfExtents, float* nearestPt) const { float bmin[3], bmax[3]; dtVsub(bmin, center, halfExtents); dtVadd(bmax, center, halfExtents); // Get nearby polygons from proximity grid. dtPolyRef polys[128]; int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128); // Find nearest polygon amongst the nearby polygons. dtPolyRef nearest = 0; float nearestDistanceSqr = FLT_MAX; for (int i = 0; i < polyCount; ++i) { dtPolyRef ref = polys[i]; float closestPtPoly[3]; float diff[3]; bool posOverPoly = false; float d; closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly); // If a point is directly over a polygon and closer than // climb height, favor that instead of straight line nearest point. dtVsub(diff, center, closestPtPoly); if (posOverPoly) { d = dtAbs(diff[1]) - tile->header->walkableClimb; d = d > 0 ? d*d : 0; } else { d = dtVlenSqr(diff); } if (d < nearestDistanceSqr) { dtVcopy(nearestPt, closestPtPoly); nearestDistanceSqr = d; nearest = ref; } } return nearest; } int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, dtPolyRef* polys, const int maxPolys) const { if (tile->bvTree) { const dtBVNode* node = &tile->bvTree[0]; const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; const float* tbmin = tile->header->bmin; const float* tbmax = tile->header->bmax; const float qfac = tile->header->bvQuantFactor; // Calculate quantized box unsigned short bmin[3], bmax[3]; // dtClamp query box to world box. float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; // Quantize bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; // Traverse tree dtPolyRef base = getPolyRefBase(tile); int n = 0; while (node < end) { const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); const bool isLeafNode = node->i >= 0; if (isLeafNode && overlap) { if (n < maxPolys) polys[n++] = base | (dtPolyRef)node->i; } if (overlap || isLeafNode) node++; else { const int escapeIndex = -node->i; node += escapeIndex; } } return n; } else { float bmin[3], bmax[3]; int n = 0; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* p = &tile->polys[i]; // Do not return off-mesh connection polygons. if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Calc polygon bounds. const float* v = &tile->verts[p->verts[0]*3]; dtVcopy(bmin, v); dtVcopy(bmax, v); for (int j = 1; j < p->vertCount; ++j) { v = &tile->verts[p->verts[j]*3]; dtVmin(bmin, v); dtVmax(bmax, v); } if (dtOverlapBounds(qmin,qmax, bmin,bmax)) { if (n < maxPolys) polys[n++] = base | (dtPolyRef)i; } } return n; } } /// @par /// /// The add operation will fail if the data is in the wrong format, the allocated tile /// space is full, or there is a tile already at the specified reference. /// /// The lastRef parameter is used to restore a tile with the same tile /// reference it had previously used. In this case the #dtPolyRef's for the /// tile will be restored to the same values they were before the tile was /// removed. /// /// The nav mesh assumes exclusive access to the data passed and will make /// changes to the dynamic portion of the data. For that reason the data /// should not be reused in other nav meshes until the tile has been successfully /// removed from this nav mesh. /// /// @see dtCreateNavMeshData, #removeTile dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef, dtTileRef* result) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return DT_FAILURE | DT_WRONG_MAGIC; if (header->version != DT_NAVMESH_VERSION) return DT_FAILURE | DT_WRONG_VERSION; // Make sure the location is free. if (getTileAt(header->x, header->y, header->layer)) return DT_FAILURE | DT_ALREADY_OCCUPIED; // Allocate a tile. dtMeshTile* tile = 0; if (!lastRef) { if (m_nextFree) { tile = m_nextFree; m_nextFree = tile->next; tile->next = 0; } } else { // Try to relocate the tile to specific index with same salt. int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef); if (tileIndex >= m_maxTiles) return DT_FAILURE | DT_OUT_OF_MEMORY; // Try to find the specific tile id from the free list. dtMeshTile* target = &m_tiles[tileIndex]; dtMeshTile* prev = 0; tile = m_nextFree; while (tile && tile != target) { prev = tile; tile = tile->next; } // Could not find the correct location. if (tile != target) return DT_FAILURE | DT_OUT_OF_MEMORY; // Remove from freelist if (!prev) m_nextFree = tile->next; else prev->next = tile->next; // Restore salt. tile->salt = decodePolyIdSalt((dtPolyRef)lastRef); } // Make sure we could allocate a tile. if (!tile) return DT_FAILURE | DT_OUT_OF_MEMORY; // Insert tile into the position lut. int h = computeTileHash(header->x, header->y, m_tileLutMask); tile->next = m_posLookup[h]; m_posLookup[h] = tile; // Patch header pointers. const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); unsigned char* d = data + headerSize; tile->verts = dtGetThenAdvanceBufferPointer(d, vertsSize); tile->polys = dtGetThenAdvanceBufferPointer(d, polysSize); tile->links = dtGetThenAdvanceBufferPointer(d, linksSize); tile->detailMeshes = dtGetThenAdvanceBufferPointer(d, detailMeshesSize); tile->detailVerts = dtGetThenAdvanceBufferPointer(d, detailVertsSize); tile->detailTris = dtGetThenAdvanceBufferPointer(d, detailTrisSize); tile->bvTree = dtGetThenAdvanceBufferPointer(d, bvtreeSize); tile->offMeshCons = dtGetThenAdvanceBufferPointer(d, offMeshLinksSize); // If there are no items in the bvtree, reset the tree pointer. if (!bvtreeSize) tile->bvTree = 0; // Build links freelist tile->linksFreeList = 0; tile->links[header->maxLinkCount-1].next = DT_NULL_LINK; for (int i = 0; i < header->maxLinkCount-1; ++i) tile->links[i].next = i+1; // Init tile. tile->header = header; tile->data = data; tile->dataSize = dataSize; tile->flags = flags; connectIntLinks(tile); // Base off-mesh connections to their starting polygons and connect connections inside the tile. baseOffMeshLinks(tile); connectExtOffMeshLinks(tile, tile, -1); // Create connections with neighbour tiles. static const int MAX_NEIS = 32; dtMeshTile* neis[MAX_NEIS]; int nneis; // Connect with layers in current tile. nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS); for (int j = 0; j < nneis; ++j) { if (neis[j] == tile) continue; connectExtLinks(tile, neis[j], -1); connectExtLinks(neis[j], tile, -1); connectExtOffMeshLinks(tile, neis[j], -1); connectExtOffMeshLinks(neis[j], tile, -1); } // Connect with neighbour tiles. for (int i = 0; i < 8; ++i) { nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS); for (int j = 0; j < nneis; ++j) { connectExtLinks(tile, neis[j], i); connectExtLinks(neis[j], tile, dtOppositeTile(i)); connectExtOffMeshLinks(tile, neis[j], i); connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i)); } } if (result) *result = getTileRef(tile); return DT_SUCCESS; } const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const { // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y && tile->header->layer == layer) { return tile; } tile = tile->next; } return 0; } int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const { int nx = x, ny = y; switch (side) { case 0: nx++; break; case 1: nx++; ny++; break; case 2: ny++; break; case 3: nx--; ny++; break; case 4: nx--; break; case 5: nx--; ny--; break; case 6: ny--; break; case 7: nx++; ny--; break; }; return getTilesAt(nx, ny, tiles, maxTiles); } int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const { int n = 0; // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) { if (n < maxTiles) tiles[n++] = tile; } tile = tile->next; } return n; } /// @par /// /// This function will not fail if the tiles array is too small to hold the /// entire result set. It will simply fill the array to capacity. int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const { int n = 0; // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) { if (n < maxTiles) tiles[n++] = tile; } tile = tile->next; } return n; } dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const { // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y && tile->header->layer == layer) { return getTileRef(tile); } tile = tile->next; } return 0; } const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const { if (!ref) return 0; unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); if ((int)tileIndex >= m_maxTiles) return 0; const dtMeshTile* tile = &m_tiles[tileIndex]; if (tile->salt != tileSalt) return 0; return tile; } int dtNavMesh::getMaxTiles() const { return m_maxTiles; } dtMeshTile* dtNavMesh::getTile(int i) { return &m_tiles[i]; } const dtMeshTile* dtNavMesh::getTile(int i) const { return &m_tiles[i]; } void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const { *tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth); *ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight); } dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const { if (!ref) return DT_FAILURE; unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; *tile = &m_tiles[it]; *poly = &m_tiles[it].polys[ip]; return DT_SUCCESS; } /// @par /// /// @warning Only use this function if it is known that the provided polygon /// reference is valid. This function is faster than #getTileAndPolyByRef, but /// it does not validate the reference. void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); *tile = &m_tiles[it]; *poly = &m_tiles[it].polys[ip]; } bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const { if (!ref) return false; unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false; return true; } /// @par /// /// This function returns the data for the tile so that, if desired, /// it can be added back to the navigation mesh at a later point. /// /// @see #addTile dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize) { if (!ref) return DT_FAILURE | DT_INVALID_PARAM; unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); if ((int)tileIndex >= m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; dtMeshTile* tile = &m_tiles[tileIndex]; if (tile->salt != tileSalt) return DT_FAILURE | DT_INVALID_PARAM; // Remove tile from hash lookup. int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask); dtMeshTile* prev = 0; dtMeshTile* cur = m_posLookup[h]; while (cur) { if (cur == tile) { if (prev) prev->next = cur->next; else m_posLookup[h] = cur->next; break; } prev = cur; cur = cur->next; } // Remove connections to neighbour tiles. static const int MAX_NEIS = 32; dtMeshTile* neis[MAX_NEIS]; int nneis; // Disconnect from other layers in current tile. nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS); for (int j = 0; j < nneis; ++j) { if (neis[j] == tile) continue; unconnectLinks(neis[j], tile); } // Disconnect from neighbour tiles. for (int i = 0; i < 8; ++i) { nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS); for (int j = 0; j < nneis; ++j) unconnectLinks(neis[j], tile); } // Reset tile. if (tile->flags & DT_TILE_FREE_DATA) { // Owns data dtFree(tile->data); tile->data = 0; tile->dataSize = 0; if (data) *data = 0; if (dataSize) *dataSize = 0; } else { if (data) *data = tile->data; if (dataSize) *dataSize = tile->dataSize; } tile->header = 0; tile->flags = 0; tile->linksFreeList = 0; tile->polys = 0; tile->verts = 0; tile->links = 0; tile->detailMeshes = 0; tile->detailVerts = 0; tile->detailTris = 0; tile->bvTree = 0; tile->offMeshCons = 0; // Update salt, salt should never be zero. #ifdef DT_POLYREF64 tile->salt = (tile->salt+1) & ((1<salt = (tile->salt+1) & ((1<salt == 0) tile->salt++; // Add to free list. tile->next = m_nextFree; m_nextFree = tile; return DT_SUCCESS; } dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const { if (!tile) return 0; const unsigned int it = (unsigned int)(tile - m_tiles); return (dtTileRef)encodePolyId(tile->salt, it, 0); } /// @par /// /// Example use case: /// @code /// /// const dtPolyRef base = navmesh->getPolyRefBase(tile); /// for (int i = 0; i < tile->header->polyCount; ++i) /// { /// const dtPoly* p = &tile->polys[i]; /// const dtPolyRef ref = base | (dtPolyRef)i; /// /// // Use the reference to access the polygon data. /// } /// @endcode dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const { if (!tile) return 0; const unsigned int it = (unsigned int)(tile - m_tiles); return encodePolyId(tile->salt, it, 0); } struct dtTileState { int magic; // Magic number, used to identify the data. int version; // Data version number. dtTileRef ref; // Tile ref at the time of storing the data. }; struct dtPolyState { unsigned short flags; // Flags (see dtPolyFlags). unsigned char area; // Area ID of the polygon. }; /// @see #storeTileState int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const { if (!tile) return 0; const int headerSize = dtAlign4(sizeof(dtTileState)); const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); return headerSize + polyStateSize; } /// @par /// /// Tile state includes non-structural data such as polygon flags, area ids, etc. /// @note The state data is only valid until the tile reference changes. /// @see #getTileStateSize, #restoreTileState dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const { // Make sure there is enough space to store the state. const int sizeReq = getTileStateSize(tile); if (maxDataSize < sizeReq) return DT_FAILURE | DT_BUFFER_TOO_SMALL; dtTileState* tileState = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtTileState))); dtPolyState* polyStates = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); // Store tile state. tileState->magic = DT_NAVMESH_STATE_MAGIC; tileState->version = DT_NAVMESH_STATE_VERSION; tileState->ref = getTileRef(tile); // Store per poly state. for (int i = 0; i < tile->header->polyCount; ++i) { const dtPoly* p = &tile->polys[i]; dtPolyState* s = &polyStates[i]; s->flags = p->flags; s->area = p->getArea(); } return DT_SUCCESS; } /// @par /// /// Tile state includes non-structural data such as polygon flags, area ids, etc. /// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's. /// @see #storeTileState dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize) { // Make sure there is enough space to store the state. const int sizeReq = getTileStateSize(tile); if (maxDataSize < sizeReq) return DT_FAILURE | DT_INVALID_PARAM; const dtTileState* tileState = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtTileState))); const dtPolyState* polyStates = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); // Check that the restore is possible. if (tileState->magic != DT_NAVMESH_STATE_MAGIC) return DT_FAILURE | DT_WRONG_MAGIC; if (tileState->version != DT_NAVMESH_STATE_VERSION) return DT_FAILURE | DT_WRONG_VERSION; if (tileState->ref != getTileRef(tile)) return DT_FAILURE | DT_INVALID_PARAM; // Restore per poly state. for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* p = &tile->polys[i]; const dtPolyState* s = &polyStates[i]; p->flags = s->flags; p->setArea(s->area); } return DT_SUCCESS; } /// @par /// /// Off-mesh connections are stored in the navigation mesh as special 2-vertex /// polygons with a single edge. At least one of the vertices is expected to be /// inside a normal polygon. So an off-mesh connection is "entered" from a /// normal polygon at one of its endpoints. This is the polygon identified by /// the prevRef parameter. dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const { unsigned int salt, it, ip; if (!polyRef) return DT_FAILURE; // Get current polygon decodePolyId(polyRef, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; const dtPoly* poly = &tile->polys[ip]; // Make sure that the current poly is indeed off-mesh link. if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) return DT_FAILURE; // Figure out which way to hand out the vertices. int idx0 = 0, idx1 = 1; // Find link that points to first vertex. for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) { if (tile->links[i].edge == 0) { if (tile->links[i].ref != prevRef) { idx0 = 1; idx1 = 0; } break; } } dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]); dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]); return DT_SUCCESS; } const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const { unsigned int salt, it, ip; if (!ref) return 0; // Get current polygon decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return 0; const dtPoly* poly = &tile->polys[ip]; // Make sure that the current poly is indeed off-mesh link. if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) return 0; const unsigned int idx = ip - tile->header->offMeshBase; dtAssert(idx < (unsigned int)tile->header->offMeshConCount); return &tile->offMeshCons[idx]; } dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags) { if (!ref) return DT_FAILURE; unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; dtPoly* poly = &tile->polys[ip]; // Change flags. poly->flags = flags; return DT_SUCCESS; } dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const { if (!ref) return DT_FAILURE; unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; const dtPoly* poly = &tile->polys[ip]; *resultFlags = poly->flags; return DT_SUCCESS; } dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area) { if (!ref) return DT_FAILURE; unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; dtPoly* poly = &tile->polys[ip]; poly->setArea(area); return DT_SUCCESS; } dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const { if (!ref) return DT_FAILURE; unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; const dtPoly* poly = &tile->polys[ip]; *resultArea = poly->getArea(); return DT_SUCCESS; }