////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP #define BOOST_CONTAINER_CONTAINER_VECTOR_HPP #ifndef BOOST_CONFIG_HPP # include #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include #include // container #include #include #include //new_allocator #include #include // container detail #include #include //equal() #include #include #include #include #include #include #include #include #include #include #include #include #include // intrusive #include // move #include #include #include #include // move/detail #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #include #endif #include // move/algo #include #include #include #include // other #include #include #include //std #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) #include //for std::initializer_list #endif namespace boost { namespace container { #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED template class vec_iterator { public: typedef std::random_access_iterator_tag iterator_category; typedef typename boost::intrusive::pointer_traits::element_type value_type; typedef typename boost::intrusive::pointer_traits::difference_type difference_type; typedef typename dtl::if_c < IsConst , typename boost::intrusive::pointer_traits::template rebind_pointer::type , Pointer >::type pointer; typedef typename boost::intrusive::pointer_traits ptr_traits; typedef typename ptr_traits::reference reference; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: Pointer m_ptr; class nat { public: Pointer get_ptr() const { return Pointer(); } }; typedef typename dtl::if_c< IsConst , vec_iterator , nat>::type nonconst_iterator; public: BOOST_CONTAINER_FORCEINLINE const Pointer &get_ptr() const BOOST_NOEXCEPT_OR_NOTHROW { return m_ptr; } BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr() BOOST_NOEXCEPT_OR_NOTHROW { return m_ptr; } BOOST_CONTAINER_FORCEINLINE explicit vec_iterator(Pointer ptr) BOOST_NOEXCEPT_OR_NOTHROW : m_ptr(ptr) {} #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: //Constructors BOOST_CONTAINER_FORCEINLINE vec_iterator() BOOST_NOEXCEPT_OR_NOTHROW : m_ptr() //Value initialization to achieve "null iterators" (N3644) {} BOOST_CONTAINER_FORCEINLINE vec_iterator(const vec_iterator& other) BOOST_NOEXCEPT_OR_NOTHROW : m_ptr(other.get_ptr()) {} BOOST_CONTAINER_FORCEINLINE vec_iterator(const nonconst_iterator &other) BOOST_NOEXCEPT_OR_NOTHROW : m_ptr(other.get_ptr()) {} BOOST_CONTAINER_FORCEINLINE vec_iterator & operator=(const vec_iterator& other) BOOST_NOEXCEPT_OR_NOTHROW { m_ptr = other.get_ptr(); return *this; } //Pointer like operators BOOST_CONTAINER_FORCEINLINE reference operator*() const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!!m_ptr); return *m_ptr; } BOOST_CONTAINER_FORCEINLINE pointer operator->() const BOOST_NOEXCEPT_OR_NOTHROW { return m_ptr; } BOOST_CONTAINER_FORCEINLINE reference operator[](difference_type off) const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!!m_ptr); return m_ptr[off]; } //Increment / Decrement BOOST_CONTAINER_FORCEINLINE vec_iterator& operator++() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!!m_ptr); ++m_ptr; return *this; } BOOST_CONTAINER_FORCEINLINE vec_iterator operator++(int) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!!m_ptr); return vec_iterator(m_ptr++); } BOOST_CONTAINER_FORCEINLINE vec_iterator& operator--() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!!m_ptr); --m_ptr; return *this; } BOOST_CONTAINER_FORCEINLINE vec_iterator operator--(int) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!!m_ptr); return vec_iterator(m_ptr--); } //Arithmetic BOOST_CONTAINER_FORCEINLINE vec_iterator& operator+=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(m_ptr || !off); m_ptr += off; return *this; } BOOST_CONTAINER_FORCEINLINE vec_iterator& operator-=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(m_ptr || !off); m_ptr -= off; return *this; } BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(const vec_iterator &x, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(x.m_ptr || !off); return vec_iterator(x.m_ptr+off); } BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(difference_type off, vec_iterator right) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(right.m_ptr || !off); right.m_ptr += off; return right; } BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator-(vec_iterator left, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(left.m_ptr || !off); left.m_ptr -= off; return left; } BOOST_CONTAINER_FORCEINLINE friend difference_type operator-(const vec_iterator &left, const vec_iterator& right) BOOST_NOEXCEPT_OR_NOTHROW { return left.m_ptr - right.m_ptr; } //Comparison operators BOOST_CONTAINER_FORCEINLINE friend bool operator== (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_ptr == r.m_ptr; } BOOST_CONTAINER_FORCEINLINE friend bool operator!= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_ptr != r.m_ptr; } BOOST_CONTAINER_FORCEINLINE friend bool operator< (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_ptr < r.m_ptr; } BOOST_CONTAINER_FORCEINLINE friend bool operator<= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_ptr <= r.m_ptr; } BOOST_CONTAINER_FORCEINLINE friend bool operator> (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_ptr > r.m_ptr; } BOOST_CONTAINER_FORCEINLINE friend bool operator>= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_ptr >= r.m_ptr; } }; template struct vector_insert_ordered_cursor { typedef typename iterator_traits::value_type size_type; typedef typename iterator_traits::reference reference; BOOST_CONTAINER_FORCEINLINE vector_insert_ordered_cursor(BiDirPosConstIt posit, BiDirValueIt valueit) : last_position_it(posit), last_value_it(valueit) {} void operator --() { --last_value_it; --last_position_it; while(this->get_pos() == size_type(-1)){ --last_value_it; --last_position_it; } } BOOST_CONTAINER_FORCEINLINE size_type get_pos() const { return *last_position_it; } BOOST_CONTAINER_FORCEINLINE reference get_val() { return *last_value_it; } BiDirPosConstIt last_position_it; BiDirValueIt last_value_it; }; struct initial_capacity_t{}; template BOOST_CONTAINER_FORCEINLINE const Pointer &vector_iterator_get_ptr(const vec_iterator &it) BOOST_NOEXCEPT_OR_NOTHROW { return it.get_ptr(); } template BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr(vec_iterator &it) BOOST_NOEXCEPT_OR_NOTHROW { return it.get_ptr(); } struct vector_uninitialized_size_t {}; static const vector_uninitialized_size_t vector_uninitialized_size = vector_uninitialized_size_t(); template struct vector_value_traits_base { static const bool trivial_dctr = dtl::is_trivially_destructible::value; static const bool trivial_dctr_after_move = has_trivial_destructor_after_move::value; static const bool trivial_copy = dtl::is_trivially_copy_constructible::value; static const bool nothrow_copy = dtl::is_nothrow_copy_constructible::value || trivial_copy; static const bool trivial_assign = dtl::is_trivially_copy_assignable::value; static const bool nothrow_assign = dtl::is_nothrow_copy_assignable::value || trivial_assign; }; template struct vector_value_traits : public vector_value_traits_base { typedef vector_value_traits_base base_t; //This is the anti-exception array destructor //to deallocate values already constructed typedef typename dtl::if_c ,dtl::scoped_destructor_n >::type ArrayDestructor; //This is the anti-exception array deallocator typedef dtl::scoped_array_deallocator ArrayDeallocator; }; //!This struct deallocates and allocated memory template < class Allocator , class StoredSizeType , class AllocatorVersion = typename dtl::version::type > struct vector_alloc_holder : public Allocator { private: BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder) public: typedef Allocator allocator_type; typedef StoredSizeType stored_size_type; typedef boost::container::allocator_traits allocator_traits_type; typedef typename allocator_traits_type::pointer pointer; typedef typename allocator_traits_type::size_type size_type; typedef typename allocator_traits_type::value_type value_type; static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator) { (void)propagate_allocator; (void)p; (void)to_alloc; (void)from_alloc; const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value || !allocator_traits_type::storage_is_unpropagable(from_alloc, p); return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(from_alloc, to_alloc)); } static bool are_swap_propagable(const allocator_type &l_a, pointer l_p, const allocator_type &r_a, pointer r_p, bool const propagate_allocator) { (void)propagate_allocator; (void)l_p; (void)r_p; (void)l_a; (void)r_a; const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value || !(allocator_traits_type::storage_is_unpropagable(l_a, l_p) || allocator_traits_type::storage_is_unpropagable(r_a, r_p)); return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(l_a, r_a)); } //Constructor, does not throw vector_alloc_holder() BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible::value) : allocator_type(), m_start(), m_size(), m_capacity() {} //Constructor, does not throw template explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW : allocator_type(boost::forward(a)), m_start(), m_size(), m_capacity() {} //Constructor, does not throw template vector_alloc_holder(vector_uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size) : allocator_type(boost::forward(a)) , m_start() //Size is initialized here so vector should only call uninitialized_xxx after this , m_size(static_cast(initial_size)) , m_capacity() { if(initial_size){ pointer reuse = pointer(); size_type final_cap = initial_size; m_start = this->allocation_command(allocate_new, initial_size, final_cap, reuse); m_capacity = static_cast(final_cap); } } //Constructor, does not throw vector_alloc_holder(vector_uninitialized_size_t, size_type initial_size) : allocator_type() , m_start() //Size is initialized here so vector should only call uninitialized_xxx after this , m_size(static_cast(initial_size)) , m_capacity() { if(initial_size){ pointer reuse = pointer(); size_type final_cap = initial_size; m_start = this->allocation_command(allocate_new, initial_size, final_cap, reuse); m_capacity = static_cast(final_cap); } } vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_NOEXCEPT_OR_NOTHROW : allocator_type(BOOST_MOVE_BASE(allocator_type, holder)) , m_start(holder.m_start) , m_size(holder.m_size) , m_capacity(holder.m_capacity) { holder.m_start = pointer(); holder.m_size = holder.m_capacity = 0; } vector_alloc_holder(initial_capacity_t, pointer p, size_type capacity, BOOST_RV_REF(vector_alloc_holder) holder) : allocator_type(BOOST_MOVE_BASE(allocator_type, holder)) , m_start(p) , m_size(holder.m_size) , m_capacity(static_cast(capacity)) { allocator_type &this_alloc = this->alloc(); allocator_type &x_alloc = holder.alloc(); if(this->is_propagable_from(x_alloc, holder.start(), this_alloc, true)){ if(this->m_capacity){ this->deallocate(this->m_start, this->m_capacity); } m_start = holder.m_start; m_capacity = holder.m_capacity; holder.m_start = pointer(); holder.m_capacity = holder.m_size = 0; } else if(this->m_capacity < holder.m_size){ size_type const n = holder.m_size; pointer reuse = pointer(); size_type final_cap = n; m_start = this->allocation_command(allocate_new, n, final_cap, reuse); m_capacity = static_cast(final_cap); #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif } } vector_alloc_holder(initial_capacity_t, pointer p, size_type n) BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible::value) : allocator_type() , m_start(p) , m_size() //n is guaranteed to fit into stored_size_type , m_capacity(static_cast(n)) {} template vector_alloc_holder(initial_capacity_t, pointer p, size_type n, BOOST_FWD_REF(AllocFwd) a) : allocator_type(::boost::forward(a)) , m_start(p) , m_size() , m_capacity(n) {} BOOST_CONTAINER_FORCEINLINE ~vector_alloc_holder() BOOST_NOEXCEPT_OR_NOTHROW { if(this->m_capacity){ this->deallocate(this->m_start, this->m_capacity); } } BOOST_CONTAINER_FORCEINLINE pointer allocation_command(boost::container::allocation_type command, size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse) { typedef typename dtl::version::type alloc_version; return this->priv_allocation_command(alloc_version(), command, limit_size, prefer_in_recvd_out_size, reuse); } BOOST_CONTAINER_FORCEINLINE pointer allocate(size_type n) { const size_type max_alloc = allocator_traits_type::max_size(this->alloc()); const size_type max = max_alloc <= stored_size_type(-1) ? max_alloc : stored_size_type(-1); if ( max < n ) boost::container::throw_length_error("get_next_capacity, allocator's max size reached"); return allocator_traits_type::allocate(this->alloc(), n); } BOOST_CONTAINER_FORCEINLINE void deallocate(const pointer &p, size_type n) { allocator_traits_type::deallocate(this->alloc(), p, n); } bool try_expand_fwd(size_type at_least) { //There is not enough memory, try to expand the old one const size_type new_cap = this->capacity() + at_least; size_type real_cap = new_cap; pointer reuse = this->start(); bool const success = !!this->allocation_command(expand_fwd, new_cap, real_cap, reuse); //Check for forward expansion if(success){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->capacity(real_cap); } return success; } template size_type next_capacity(size_type additional_objects) const { BOOST_ASSERT(additional_objects > size_type(this->m_capacity - this->m_size)); size_type max = allocator_traits_type::max_size(this->alloc()); (clamp_by_stored_size_type)(max, stored_size_type()); const size_type remaining_cap = max - size_type(this->m_capacity); const size_type min_additional_cap = additional_objects - size_type(this->m_capacity - this->m_size); if ( remaining_cap < min_additional_cap ) boost::container::throw_length_error("get_next_capacity, allocator's max size reached"); return GrowthFactorType()( size_type(this->m_capacity), min_additional_cap, max); } pointer m_start; stored_size_type m_size; stored_size_type m_capacity; void swap_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW { boost::adl_move_swap(this->m_start, x.m_start); boost::adl_move_swap(this->m_size, x.m_size); boost::adl_move_swap(this->m_capacity, x.m_capacity); } void steal_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW { this->m_start = x.m_start; this->m_size = x.m_size; this->m_capacity = x.m_capacity; x.m_start = pointer(); x.m_size = x.m_capacity = 0; } BOOST_CONTAINER_FORCEINLINE allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW { return *this; } BOOST_CONTAINER_FORCEINLINE const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW { return *this; } BOOST_CONTAINER_FORCEINLINE const pointer &start() const BOOST_NOEXCEPT_OR_NOTHROW { return m_start; } BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW { return m_capacity; } BOOST_CONTAINER_FORCEINLINE void start(const pointer &p) BOOST_NOEXCEPT_OR_NOTHROW { m_start = p; } BOOST_CONTAINER_FORCEINLINE void capacity(const size_type &c) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT( c <= stored_size_type(-1)); m_capacity = c; } static BOOST_CONTAINER_FORCEINLINE void on_capacity_overflow() { } private: void priv_first_allocation(size_type cap) { if(cap){ pointer reuse = pointer(); m_start = this->allocation_command(allocate_new, cap, cap, reuse); m_capacity = cap; #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif } } BOOST_CONTAINER_FORCEINLINE static void clamp_by_stored_size_type(size_type &, size_type) {} template BOOST_CONTAINER_FORCEINLINE static void clamp_by_stored_size_type(size_type &s, SomeStoredSizeType) { if (s >= SomeStoredSizeType(-1) ) s = SomeStoredSizeType(-1); } BOOST_CONTAINER_FORCEINLINE pointer priv_allocation_command(version_1, boost::container::allocation_type command, size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse) { (void)command; BOOST_ASSERT( (command & allocate_new)); BOOST_ASSERT(!(command & nothrow_allocation)); //First detect overflow on smaller stored_size_types if (limit_size > stored_size_type(-1)){ boost::container::throw_length_error("get_next_capacity, allocator's max size reached"); } (clamp_by_stored_size_type)(prefer_in_recvd_out_size, stored_size_type()); pointer const p = this->allocate(prefer_in_recvd_out_size); reuse = pointer(); return p; } pointer priv_allocation_command(version_2, boost::container::allocation_type command, size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse) { //First detect overflow on smaller stored_size_types if (limit_size > stored_size_type(-1)){ boost::container::throw_length_error("get_next_capacity, allocator's max size reached"); } (clamp_by_stored_size_type)(prefer_in_recvd_out_size, stored_size_type()); //Allocate memory pointer p = this->alloc().allocation_command(command, limit_size, prefer_in_recvd_out_size, reuse); //If after allocation prefer_in_recvd_out_size is not representable by stored_size_type, truncate it. (clamp_by_stored_size_type)(prefer_in_recvd_out_size, stored_size_type()); return p; } }; //!This struct deallocates and allocated memory template struct vector_alloc_holder : public Allocator { private: BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder) public: typedef Allocator allocator_type; typedef boost::container:: allocator_traits allocator_traits_type; typedef typename allocator_traits_type::pointer pointer; typedef typename allocator_traits_type::size_type size_type; typedef typename allocator_traits_type::value_type value_type; typedef StoredSizeType stored_size_type; template friend struct vector_alloc_holder; //Constructor, does not throw vector_alloc_holder() BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible::value) : allocator_type(), m_size() {} //Constructor, does not throw template explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW : allocator_type(boost::forward(a)), m_size() {} //Constructor, does not throw template vector_alloc_holder(vector_uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size) : allocator_type(boost::forward(a)) , m_size(initial_size) //Size is initialized here... { //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor this->priv_first_allocation(initial_size); } //Constructor, does not throw vector_alloc_holder(vector_uninitialized_size_t, size_type initial_size) : allocator_type() , m_size(initial_size) //Size is initialized here... { //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor this->priv_first_allocation(initial_size); } vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) : allocator_type(BOOST_MOVE_BASE(allocator_type, holder)) , m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this { ::boost::container::uninitialized_move_alloc_n (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), m_size, boost::movelib::to_raw_pointer(this->start())); } template vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder BOOST_RV_REF_END holder) : allocator_type() , m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort { //Different allocator type so we must check we have enough storage const size_type n = holder.m_size; this->priv_first_allocation(n); ::boost::container::uninitialized_move_alloc_n (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), n, boost::movelib::to_raw_pointer(this->start())); } static BOOST_CONTAINER_FORCEINLINE void on_capacity_overflow() { allocator_type::on_capacity_overflow(); } BOOST_CONTAINER_FORCEINLINE void priv_first_allocation(size_type cap) { if(cap > allocator_type::internal_capacity){ on_capacity_overflow(); } } BOOST_CONTAINER_FORCEINLINE void deep_swap(vector_alloc_holder &x) { this->priv_deep_swap(x); } template void deep_swap(vector_alloc_holder &x) { typedef typename real_allocator::type other_allocator_type; if(this->m_size > other_allocator_type::internal_capacity || x.m_size > allocator_type::internal_capacity){ on_capacity_overflow(); } this->priv_deep_swap(x); } BOOST_CONTAINER_FORCEINLINE void swap_resources(vector_alloc_holder &) BOOST_NOEXCEPT_OR_NOTHROW { //Containers with version 0 allocators can't be moved without moving elements one by one on_capacity_overflow(); } BOOST_CONTAINER_FORCEINLINE void steal_resources(vector_alloc_holder &) { //Containers with version 0 allocators can't be moved without moving elements one by one on_capacity_overflow(); } BOOST_CONTAINER_FORCEINLINE allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW { return *this; } BOOST_CONTAINER_FORCEINLINE const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW { return *this; } BOOST_CONTAINER_FORCEINLINE bool try_expand_fwd(size_type at_least) { return !at_least; } BOOST_CONTAINER_FORCEINLINE pointer start() const BOOST_NOEXCEPT_OR_NOTHROW { return allocator_type::internal_storage(); } BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW { return allocator_type::internal_capacity; } stored_size_type m_size; private: template void priv_deep_swap(vector_alloc_holder &x) { const size_type MaxTmpStorage = sizeof(value_type)*allocator_type::internal_capacity; value_type *const first_this = boost::movelib::to_raw_pointer(this->start()); value_type *const first_x = boost::movelib::to_raw_pointer(x.start()); if(this->m_size < x.m_size){ boost::container::deep_swap_alloc_n(this->alloc(), first_this, this->m_size, first_x, x.m_size); } else{ boost::container::deep_swap_alloc_n(this->alloc(), first_x, x.m_size, first_this, this->m_size); } boost::adl_move_swap(this->m_size, x.m_size); } }; struct growth_factor_60; template struct get_vector_opt { typedef vector_opt< typename default_if_void::type , typename default_if_void::type > type; }; template struct get_vector_opt { typedef vector_opt type; }; #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //! A vector is a sequence that supports random access to elements, constant //! time insertion and removal of elements at the end, and linear time insertion //! and removal of elements at the beginning or in the middle. The number of //! elements in a vector may vary dynamically; memory management is automatic. //! //! \tparam T The type of object that is stored in the vector //! \tparam A The allocator used for all internal memory management, use void //! for the default allocator //! \tparam Options A type produced from \c boost::container::vector_options. template class vector { public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef T value_type; typedef BOOST_CONTAINER_IMPDEF (typename real_allocator::type) allocator_type; typedef ::boost::container::allocator_traits allocator_traits_t; typedef typename allocator_traits::pointer pointer; typedef typename allocator_traits::const_pointer const_pointer; typedef typename allocator_traits::reference reference; typedef typename allocator_traits::const_reference const_reference; typedef typename allocator_traits::size_type size_type; typedef typename allocator_traits::difference_type difference_type; typedef allocator_type stored_allocator_type; typedef BOOST_CONTAINER_IMPDEF(vec_iterator) iterator; typedef BOOST_CONTAINER_IMPDEF(vec_iterator) const_iterator; typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator) reverse_iterator; typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator) const_reverse_iterator; private: #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED typedef typename boost::container:: allocator_traits::size_type alloc_size_type; typedef typename get_vector_opt::type options_type; typedef typename options_type::growth_factor_type growth_factor_type; typedef typename options_type::stored_size_type stored_size_type; typedef value_less value_less_t; //If provided the stored_size option must specify a type that is equal or a type that is smaller. BOOST_STATIC_ASSERT( (sizeof(stored_size_type) < sizeof(alloc_size_type) || dtl::is_same::value) ); typedef typename dtl::version::type alloc_version; typedef boost::container::vector_alloc_holder alloc_holder_t; alloc_holder_t m_holder; typedef allocator_traits allocator_traits_type; template friend class vector; protected: BOOST_CONTAINER_FORCEINLINE static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator) { return alloc_holder_t::is_propagable_from(from_alloc, p, to_alloc, propagate_allocator); } BOOST_CONTAINER_FORCEINLINE static bool are_swap_propagable( const allocator_type &l_a, pointer l_p , const allocator_type &r_a, pointer r_p, bool const propagate_allocator) { return alloc_holder_t::are_swap_propagable(l_a, l_p, r_a, r_p, propagate_allocator); } #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: BOOST_COPYABLE_AND_MOVABLE(vector) typedef vector_value_traits value_traits; typedef constant_iterator cvalue_iterator; protected: BOOST_CONTAINER_FORCEINLINE void steal_resources(vector &x) { return this->m_holder.steal_resources(x.m_holder); } template BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity, BOOST_FWD_REF(AllocFwd) a) : m_holder(initial_capacity_t(), initial_memory, capacity, ::boost::forward(a)) {} BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity) : m_holder(initial_capacity_t(), initial_memory, capacity) {} #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: ////////////////////////////////////////////// // // construct/copy/destroy // ////////////////////////////////////////////// //! Effects: Constructs a vector taking the allocator as parameter. //! //! Throws: Nothing. //! //! Complexity: Constant. vector() BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible::value) : m_holder() {} //! Effects: Constructs a vector taking the allocator as parameter. //! //! Throws: Nothing //! //! Complexity: Constant. explicit vector(const allocator_type& a) BOOST_NOEXCEPT_OR_NOTHROW : m_holder(a) {} //! Effects: Constructs a vector and inserts n value initialized values. //! //! Throws: If allocator_type's allocation //! throws or T's value initialization throws. //! //! Complexity: Linear to n. explicit vector(size_type n) : m_holder(vector_uninitialized_size, n) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif boost::container::uninitialized_value_init_alloc_n (this->m_holder.alloc(), n, this->priv_raw_begin()); } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts n value initialized values. //! //! Throws: If allocator_type's allocation //! throws or T's value initialization throws. //! //! Complexity: Linear to n. explicit vector(size_type n, const allocator_type &a) : m_holder(vector_uninitialized_size, a, n) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif boost::container::uninitialized_value_init_alloc_n (this->m_holder.alloc(), n, this->priv_raw_begin()); } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts n default initialized values. //! //! Throws: If allocator_type's allocation //! throws or T's default initialization throws. //! //! Complexity: Linear to n. //! //! Note: Non-standard extension vector(size_type n, default_init_t) : m_holder(vector_uninitialized_size, n) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif boost::container::uninitialized_default_init_alloc_n (this->m_holder.alloc(), n, this->priv_raw_begin()); } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts n default initialized values. //! //! Throws: If allocator_type's allocation //! throws or T's default initialization throws. //! //! Complexity: Linear to n. //! //! Note: Non-standard extension vector(size_type n, default_init_t, const allocator_type &a) : m_holder(vector_uninitialized_size, a, n) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif boost::container::uninitialized_default_init_alloc_n (this->m_holder.alloc(), n, this->priv_raw_begin()); } //! Effects: Constructs a vector //! and inserts n copies of value. //! //! Throws: If allocator_type's allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to n. vector(size_type n, const T& value) : m_holder(vector_uninitialized_size, n) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif boost::container::uninitialized_fill_alloc_n (this->m_holder.alloc(), value, n, this->priv_raw_begin()); } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to n. vector(size_type n, const T& value, const allocator_type& a) : m_holder(vector_uninitialized_size, a, n) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif boost::container::uninitialized_fill_alloc_n (this->m_holder.alloc(), value, n, this->priv_raw_begin()); } //! Effects: Constructs a vector //! and inserts a copy of the range [first, last) in the vector. //! //! Throws: If allocator_type's allocation //! throws or T's constructor taking a dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). // template // vector(InIt first, InIt last // BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c // < dtl::is_convertible::value // BOOST_MOVE_I dtl::nat >::type * = 0) // ) -> vector::value_type, new_allocator::value_type>>; template vector(InIt first, InIt last BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c < dtl::is_convertible::value BOOST_MOVE_I dtl::nat >::type * = 0) ) : m_holder() { this->assign(first, last); } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the vector. //! //! Throws: If allocator_type's allocation //! throws or T's constructor taking a dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). // template // vector(InIt first, InIt last, const allocator_type& a // BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c // < dtl::is_convertible::value // BOOST_MOVE_I dtl::nat >::type * = 0) // ) -> vector::value_type, new_allocator::value_type>>; template vector(InIt first, InIt last, const allocator_type& a BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c < dtl::is_convertible::value BOOST_MOVE_I dtl::nat >::type * = 0) ) : m_holder(a) { this->assign(first, last); } //! Effects: Copy constructs a vector. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to the elements x contains. vector(const vector &x) : m_holder( vector_uninitialized_size , allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc()) , x.size()) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += x.size() != 0; #endif ::boost::container::uninitialized_copy_alloc_n ( this->m_holder.alloc(), x.priv_raw_begin() , x.size(), this->priv_raw_begin()); } //! Effects: Move constructor. Moves x's resources to *this. //! //! Throws: Nothing //! //! Complexity: Constant. vector(BOOST_RV_REF(vector) x) BOOST_NOEXCEPT_OR_NOTHROW : m_holder(boost::move(x.m_holder)) { BOOST_STATIC_ASSERT((!allocator_traits_type::is_partially_propagable::value)); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts a copy of the range [il.begin(), il.last()) in the vector //! //! Throws: If T's constructor taking a dereferenced initializer_list iterator throws. //! //! Complexity: Linear to the range [il.begin(), il.end()). vector(std::initializer_list il, const allocator_type& a = allocator_type()) : m_holder(a) { this->assign(il.begin(), il.end()); } #endif #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Move constructor. Moves x's resources to *this. //! //! Throws: If T's move constructor or allocation throws //! //! Complexity: Linear. //! //! Note: Non-standard extension to support static_vector template vector(BOOST_RV_REF_BEG vector BOOST_RV_REF_END x , typename dtl::enable_if_c < dtl::is_version::type, 0>::value>::type * = 0 ) : m_holder(boost::move(x.m_holder)) {} #endif //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Copy constructs a vector using the specified allocator. //! //! Postcondition: x == *this. //! //! Throws: If allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to the elements x contains. vector(const vector &x, const allocator_type &a) : m_holder(vector_uninitialized_size, a, x.size()) { #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += x.size() != 0; #endif ::boost::container::uninitialized_copy_alloc_n_source ( this->m_holder.alloc(), x.priv_raw_begin() , x.size(), this->priv_raw_begin()); } //! Effects: Move constructor using the specified allocator. //! Moves x's resources to *this if a == allocator_type(). //! Otherwise copies values from x to *this. //! //! Throws: If allocation or T's copy constructor throws. //! //! Complexity: Constant if a == x.get_allocator(), linear otherwise. vector(BOOST_RV_REF(vector) x, const allocator_type &a) : m_holder( vector_uninitialized_size, a , is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, true) ? 0 : x.size() ) { if(is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, true)){ this->m_holder.steal_resources(x.m_holder); } else{ const size_type n = x.size(); #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS this->num_alloc += n != 0; #endif ::boost::container::uninitialized_move_alloc_n_source ( this->m_holder.alloc(), x.priv_raw_begin() , n, this->priv_raw_begin()); } } //! Effects: Destroys the vector. All stored values are destroyed //! and used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements. ~vector() BOOST_NOEXCEPT_OR_NOTHROW { boost::container::destroy_alloc_n (this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size); //vector_alloc_holder deallocates the data } //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment throws. //! //! Complexity: Linear to the number of elements in x. BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x) { if (BOOST_LIKELY(&x != this)){ this->priv_copy_assign(x); } return *this; } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! Effects: Make *this container contains elements from il. //! //! Complexity: Linear to the range [il.begin(), il.end()). BOOST_CONTAINER_FORCEINLINE vector& operator=(std::initializer_list il) { this->assign(il.begin(), il.end()); return *this; } #endif //! Effects: Move assignment. All x's values are transferred to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: If allocator_traits_type::propagate_on_container_move_assignment //! is false and (allocation throws or value_type's move constructor throws) //! //! Complexity: Constant if allocator_traits_type:: //! propagate_on_container_move_assignment is true or //! this->get>allocator() == x.get_allocator(). Linear otherwise. BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_RV_REF(vector) x) BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value || allocator_traits_type::is_always_equal::value) { if (BOOST_LIKELY(&x != this)){ this->priv_move_assign(boost::move(x)); } return *this; } #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Move assignment. All x's values are transferred to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: If move constructor/assignment of T throws or allocation throws //! //! Complexity: Linear. //! //! Note: Non-standard extension to support static_vector template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_and < vector& , dtl::is_version::type, 0> , dtl::is_different::type, allocator_type> >::type operator=(BOOST_RV_REF_BEG vector BOOST_RV_REF_END x) { this->priv_move_assign(boost::move(x)); return *this; } //! Effects: Copy assignment. All x's values are copied to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: If move constructor/assignment of T throws or allocation throws //! //! Complexity: Linear. //! //! Note: Non-standard extension to support static_vector template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_and < vector& , dtl::is_version::type, 0> , dtl::is_different::type, allocator_type> >::type operator=(const vector &x) { this->priv_copy_assign(x); return *this; } #endif //! Effects: Assigns the the range [first, last) to *this. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment or //! T's constructor/assignment from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(InIt first, InIt last //Input iterators or version 0 allocator BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::and_ < dtl::is_different BOOST_MOVE_I dtl::is_not_input_iterator > >::type * = 0) ) { //Overwrite all elements we can from [first, last) iterator cur = this->begin(); const iterator end_it = this->end(); for ( ; first != last && cur != end_it; ++cur, ++first){ *cur = *first; } if (first == last){ //There are no more elements in the sequence, erase remaining T* const end_pos = this->priv_raw_end(); const size_type n = static_cast(end_pos - boost::movelib::iterator_to_raw_pointer(cur)); this->priv_destroy_last_n(n); } else{ //There are more elements in the range, insert the remaining ones this->insert(this->cend(), first, last); } } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! Effects: Assigns the the range [il.begin(), il.end()) to *this. //! //! Throws: If memory allocation throws or //! T's constructor from dereferencing iniializer_list iterator throws. //! BOOST_CONTAINER_FORCEINLINE void assign(std::initializer_list il) { this->assign(il.begin(), il.end()); } #endif //! Effects: Assigns the the range [first, last) to *this. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment or //! T's constructor/assignment from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(FwdIt first, FwdIt last //Forward iterators and version > 0 allocator BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_same BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_input_iterator >::type * = 0) ) { //For Fwd iterators the standard only requires EmplaceConstructible and assignable from *first //so we can't do any backwards allocation const size_type input_sz = static_cast(boost::container::iterator_distance(first, last)); const size_type old_capacity = this->capacity(); if(input_sz > old_capacity){ //If input range is too big, we need to reallocate size_type real_cap = 0; pointer reuse(this->m_holder.start()); pointer const ret(this->m_holder.allocation_command(allocate_new|expand_fwd, input_sz, real_cap = input_sz, reuse)); if(!reuse){ //New allocation, just emplace new values #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif pointer const old_p = this->m_holder.start(); if(old_p){ this->priv_destroy_all(); this->m_holder.deallocate(old_p, old_capacity); } this->m_holder.start(ret); this->m_holder.capacity(real_cap); this->m_holder.m_size = 0; this->priv_uninitialized_construct_at_end(first, last); return; } else{ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->m_holder.capacity(real_cap); //Forward expansion, use assignment + back deletion/construction that comes later } } boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), first, input_sz, this->priv_raw_begin(), this->size()); this->m_holder.m_size = input_sz; } //! Effects: Assigns the n copies of val to *this. //! //! Throws: If memory allocation throws or //! T's copy/move constructor/assignment throws. //! //! Complexity: Linear to n. BOOST_CONTAINER_FORCEINLINE void assign(size_type n, const value_type& val) { this->assign(cvalue_iterator(val, n), cvalue_iterator()); } //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const BOOST_NOEXCEPT_OR_NOTHROW { return this->m_holder.alloc(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. BOOST_CONTAINER_FORCEINLINE stored_allocator_type &get_stored_allocator() BOOST_NOEXCEPT_OR_NOTHROW { return this->m_holder.alloc(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. BOOST_CONTAINER_FORCEINLINE const stored_allocator_type &get_stored_allocator() const BOOST_NOEXCEPT_OR_NOTHROW { return this->m_holder.alloc(); } ////////////////////////////////////////////// // // iterators // ////////////////////////////////////////////// //! Effects: Returns an iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE iterator begin() BOOST_NOEXCEPT_OR_NOTHROW { return iterator(this->m_holder.start()); } //! Effects: Returns a const_iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_iterator begin() const BOOST_NOEXCEPT_OR_NOTHROW { return const_iterator(this->m_holder.start()); } //! Effects: Returns an iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE iterator end() BOOST_NOEXCEPT_OR_NOTHROW { pointer const bg = this->m_holder.start(); size_type const sz = this->m_holder.m_size; return iterator(BOOST_LIKELY(sz) ? bg + sz : bg); //Avoid UB on null-pointer arithmetic } //! Effects: Returns a const_iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_iterator end() const BOOST_NOEXCEPT_OR_NOTHROW { return this->cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE reverse_iterator rbegin() BOOST_NOEXCEPT_OR_NOTHROW { return reverse_iterator(this->end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rbegin() const BOOST_NOEXCEPT_OR_NOTHROW { return this->crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE reverse_iterator rend() BOOST_NOEXCEPT_OR_NOTHROW { return reverse_iterator(this->begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rend() const BOOST_NOEXCEPT_OR_NOTHROW { return this->crend(); } //! Effects: Returns a const_iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const BOOST_NOEXCEPT_OR_NOTHROW { return const_iterator(this->m_holder.start()); } //! Effects: Returns a const_iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_iterator cend() const BOOST_NOEXCEPT_OR_NOTHROW { pointer const bg = this->m_holder.start(); size_type const sz = this->m_holder.m_size; return const_iterator(BOOST_LIKELY(sz) ? bg + sz : bg); //Avoid UB on null-pointer arithmetic } //{ return const_iterator(this->m_holder.start() + this->m_holder.m_size); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crbegin() const BOOST_NOEXCEPT_OR_NOTHROW { return const_reverse_iterator(this->end());} //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crend() const BOOST_NOEXCEPT_OR_NOTHROW { return const_reverse_iterator(this->begin()); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! Effects: Returns true if the vector contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE bool empty() const BOOST_NOEXCEPT_OR_NOTHROW { return !this->m_holder.m_size; } //! Effects: Returns the number of the elements contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE size_type size() const BOOST_NOEXCEPT_OR_NOTHROW { return this->m_holder.m_size; } //! Effects: Returns the largest possible size of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW { return allocator_traits_type::max_size(this->m_holder.alloc()); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are value initialized. //! //! Throws: If memory allocation throws, or T's copy/move or value initialization throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size) { this->priv_resize(new_size, value_init); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default initialized. //! //! Throws: If memory allocation throws, or T's copy/move or default initialization throws. //! //! Complexity: Linear to the difference between size() and new_size. //! //! Note: Non-standard extension void resize(size_type new_size, default_init_t) { this->priv_resize(new_size, default_init); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy/move constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { this->priv_resize(new_size, x); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW { return this->m_holder.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy/move constructor throws. BOOST_CONTAINER_FORCEINLINE void reserve(size_type new_cap) { if (this->capacity() < new_cap){ this->priv_reserve_no_capacity(new_cap, alloc_version()); } } //! Effects: Tries to deallocate the excess of memory created //! with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy/move constructor throws. //! //! Complexity: Linear to size(). BOOST_CONTAINER_FORCEINLINE void shrink_to_fit() { this->priv_shrink_to_fit(alloc_version()); } ////////////////////////////////////////////// // // element access // ////////////////////////////////////////////// //! Requires: !empty() //! //! Effects: Returns a reference to the first //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return *this->m_holder.start(); } //! Requires: !empty() //! //! Effects: Returns a const reference to the first //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return *this->m_holder.start(); } //! Requires: !empty() //! //! Effects: Returns a reference to the last //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference back() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return this->m_holder.start()[this->m_holder.m_size - 1]; } //! Requires: !empty() //! //! Effects: Returns a const reference to the last //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference back() const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return this->m_holder.start()[this->m_holder.m_size - 1]; } //! Requires: size() > n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference operator[](size_type n) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->m_holder.m_size > n); return this->m_holder.start()[n]; } //! Requires: size() > n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference operator[](size_type n) const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->m_holder.m_size > n); return this->m_holder.start()[n]; } //! Requires: size() >= n. //! //! Effects: Returns an iterator to the nth element //! from the beginning of the container. Returns end() //! if n == size(). //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Non-standard extension iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->m_holder.m_size >= n); return iterator(this->m_holder.start()+n); } //! Requires: size() >= n. //! //! Effects: Returns a const_iterator to the nth element //! from the beginning of the container. Returns end() //! if n == size(). //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Non-standard extension const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->m_holder.m_size >= n); return const_iterator(this->m_holder.start()+n); } //! Requires: begin() <= p <= end(). //! //! Effects: Returns the index of the element pointed by p //! and size() if p == end(). //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Non-standard extension size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW { //Range check assert done in priv_index_of return this->priv_index_of(vector_iterator_get_ptr(p)); } //! Requires: begin() <= p <= end(). //! //! Effects: Returns the index of the element pointed by p //! and size() if p == end(). //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Non-standard extension size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW { //Range check assert done in priv_index_of return this->priv_index_of(vector_iterator_get_ptr(p)); } //! Requires: size() > n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. reference at(size_type n) { this->priv_throw_if_out_of_range(n); return this->m_holder.start()[n]; } //! Requires: size() > n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. const_reference at(size_type n) const { this->priv_throw_if_out_of_range(n); return this->m_holder.start()[n]; } ////////////////////////////////////////////// // // data access // ////////////////////////////////////////////// //! Returns: A pointer such that [data(),data() + size()) is a valid range. //! For a non-empty vector, data() == &front(). //! //! Throws: Nothing. //! //! Complexity: Constant. T* data() BOOST_NOEXCEPT_OR_NOTHROW { return this->priv_raw_begin(); } //! Returns: A pointer such that [data(),data() + size()) is a valid range. //! For a non-empty vector, data() == &front(). //! //! Throws: Nothing. //! //! Complexity: Constant. const T * data() const BOOST_NOEXCEPT_OR_NOTHROW { return this->priv_raw_begin(); } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the end of the vector. //! //! Returns: A reference to the created object. //! //! Throws: If memory allocation throws or the in-place constructor throws or //! T's copy/move constructor throws. //! //! Complexity: Amortized constant time. template BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_FWD_REF(Args)...args) { if (BOOST_LIKELY(this->room_enough())){ //There is more memory, just construct a new object at the end T* const p = this->priv_raw_end(); allocator_traits_type::construct(this->m_holder.alloc(), p, ::boost::forward(args)...); ++this->m_holder.m_size; return *p; } else{ typedef dtl::insert_emplace_proxy type; return *this->priv_forward_range_insert_no_capacity (this->back_ptr(), 1, type(::boost::forward(args)...), alloc_version()); } } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the end of the vector. //! //! Throws: If the in-place constructor throws. //! //! Complexity: Constant time. //! //! Note: Non-standard extension. template BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_FWD_REF(Args)...args) { const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u)); if (BOOST_LIKELY(is_room_enough)){ //There is more memory, just construct a new object at the end allocator_traits_type::construct(this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward(args)...); ++this->m_holder.m_size; } return is_room_enough; } //! Requires: position must be a valid iterator of *this. //! //! Effects: Inserts an object of type T constructed with //! std::forward(args)... before position //! //! Throws: If memory allocation throws or the in-place constructor throws or //! T's copy/move constructor/assignment throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. template iterator emplace(const_iterator position, BOOST_FWD_REF(Args) ...args) { BOOST_ASSERT(this->priv_in_range_or_end(position)); //Just call more general insert(pos, size, value) and return iterator typedef dtl::insert_emplace_proxy type; return this->priv_forward_range_insert( vector_iterator_get_ptr(position), 1 , type(::boost::forward(args)...)); } #else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_CONTAINER_VECTOR_EMPLACE_CODE(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_MOVE_UREF##N)\ {\ if (BOOST_LIKELY(this->room_enough())){\ T* const p = this->priv_raw_end();\ allocator_traits_type::construct (this->m_holder.alloc()\ , this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ++this->m_holder.m_size;\ return *p;\ }\ else{\ typedef dtl::insert_emplace_proxy_arg##N type;\ return *this->priv_forward_range_insert_no_capacity\ ( this->back_ptr(), 1, type(BOOST_MOVE_FWD##N), alloc_version());\ }\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_MOVE_UREF##N)\ {\ const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));\ if (BOOST_LIKELY(is_room_enough)){\ allocator_traits_type::construct (this->m_holder.alloc()\ , this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ++this->m_holder.m_size;\ }\ return is_room_enough;\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace(const_iterator pos BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ BOOST_ASSERT(this->priv_in_range_or_end(pos));\ typedef dtl::insert_emplace_proxy_arg##N type;\ return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), 1, type(BOOST_MOVE_FWD##N));\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_VECTOR_EMPLACE_CODE) #undef BOOST_CONTAINER_VECTOR_EMPLACE_CODE #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x at the end of the vector. //! //! Throws: If memory allocation throws or //! T's copy/move constructor throws. //! //! Complexity: Amortized constant time. void push_back(const T &x); //! Effects: Constructs a new element in the end of the vector //! and moves the resources of x to this new element. //! //! Throws: If memory allocation throws or //! T's copy/move constructor throws. //! //! Complexity: Amortized constant time. void push_back(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a copy of x before position. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator position, const T &x); //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a new element before position with x's resources. //! //! Throws: If memory allocation throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator position, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator) #endif //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert n copies of x before pos. //! //! Returns: an iterator to the first inserted element or p if n is 0. //! //! Throws: If memory allocation throws or T's copy/move constructor throws. //! //! Complexity: Linear to n. iterator insert(const_iterator p, size_type n, const T& x) { BOOST_ASSERT(this->priv_in_range_or_end(p)); dtl::insert_n_copies_proxy proxy(x); return this->priv_forward_range_insert(vector_iterator_get_ptr(p), n, proxy); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a copy of the [first, last) range before pos. //! //! Returns: an iterator to the first inserted element or pos if first == last. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws or T's copy/move constructor/assignment throws. //! //! Complexity: Linear to boost::container::iterator_distance [first, last). template iterator insert(const_iterator pos, InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename dtl::disable_if_or < void , dtl::is_convertible , dtl::is_not_input_iterator >::type * = 0 #endif ) { BOOST_ASSERT(this->priv_in_range_or_end(pos)); const size_type n_pos = pos - this->cbegin(); iterator it(vector_iterator_get_ptr(pos)); for(;first != last; ++first){ it = this->emplace(it, *first); ++it; } return iterator(this->m_holder.start() + n_pos); } #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template iterator insert(const_iterator pos, FwdIt first, FwdIt last , typename dtl::disable_if_or < void , dtl::is_convertible , dtl::is_input_iterator >::type * = 0 ) { BOOST_ASSERT(this->priv_in_range_or_end(pos)); dtl::insert_range_proxy proxy(first); return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), boost::container::iterator_distance(first, last), proxy); } #endif //! Requires: p must be a valid iterator of *this. num, must //! be equal to boost::container::iterator_distance(first, last) //! //! Effects: Insert a copy of the [first, last) range before pos. //! //! Returns: an iterator to the first inserted element or pos if first == last. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws or T's copy/move constructor/assignment throws. //! //! Complexity: Linear to boost::container::iterator_distance [first, last). //! //! Note: This function avoids a linear operation to calculate boost::container::iterator_distance[first, last) //! for forward and bidirectional iterators, and a one by one insertion for input iterators. This is a //! a non-standard extension. #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template iterator insert(const_iterator pos, size_type num, InIt first, InIt last) { BOOST_ASSERT(this->priv_in_range_or_end(pos)); BOOST_ASSERT(dtl::is_input_iterator::value || num == static_cast(boost::container::iterator_distance(first, last))); (void)last; dtl::insert_range_proxy proxy(first); return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), num, proxy); } #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a copy of the [il.begin(), il.end()) range before position. //! //! Returns: an iterator to the first inserted element or position if first == last. //! //! Complexity: Linear to the range [il.begin(), il.end()). iterator insert(const_iterator position, std::initializer_list il) { //Assertion done in insert() return this->insert(position, il.begin(), il.end()); } #endif //! Effects: Removes the last element from the container. //! //! Throws: Nothing. //! //! Complexity: Constant time. void pop_back() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); //Destroy last element this->priv_destroy_last(); } //! Effects: Erases the element at position pos. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements between pos and the //! last element. Constant if pos is the last element. iterator erase(const_iterator position) { BOOST_ASSERT(this->priv_in_range(position)); const pointer p = vector_iterator_get_ptr(position); T *const pos_ptr = boost::movelib::to_raw_pointer(p); T *const beg_ptr = this->priv_raw_begin(); T *const new_end_ptr = ::boost::container::move(pos_ptr + 1, beg_ptr + this->m_holder.m_size, pos_ptr); //Move elements forward and destroy last this->priv_destroy_last(pos_ptr != new_end_ptr); return iterator(p); } //! Effects: Erases the elements pointed by [first, last). //! //! Throws: Nothing. //! //! Complexity: Linear to the distance between first and last //! plus linear to the elements between pos and the last element. iterator erase(const_iterator first, const_iterator last) { if (first != last){ BOOST_ASSERT(this->priv_in_range(first)); BOOST_ASSERT(this->priv_in_range_or_end(last)); BOOST_ASSERT(first < last); T* const old_end_ptr = this->priv_raw_end(); T* const first_ptr = boost::movelib::to_raw_pointer(vector_iterator_get_ptr(first)); T* const last_ptr = boost::movelib::to_raw_pointer(vector_iterator_get_ptr(last)); T* const ptr = boost::movelib::to_raw_pointer(boost::container::move(last_ptr, old_end_ptr, first_ptr)); this->priv_destroy_last_n(old_end_ptr - ptr); } return iterator(vector_iterator_get_ptr(first)); } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE void swap(vector& x) BOOST_NOEXCEPT_IF( ((allocator_traits_type::propagate_on_container_swap::value || allocator_traits_type::is_always_equal::value) && !dtl::is_version::value)) { this->priv_swap(x, dtl::bool_::value>()); } #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Linear //! //! Note: Non-standard extension to support static_vector template BOOST_CONTAINER_FORCEINLINE void swap(vector & x , typename dtl::enable_if_and < void , dtl::is_version::type, 0> , dtl::is_different::type, allocator_type> >::type * = 0 ) { this->m_holder.deep_swap(x.m_holder); } #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //! Effects: Erases all the elements of the vector. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the container. BOOST_CONTAINER_FORCEINLINE void clear() BOOST_NOEXCEPT_OR_NOTHROW { this->priv_destroy_all(); } //! Effects: Returns true if x and y are equal //! //! Complexity: Linear to the number of elements in the container. BOOST_CONTAINER_FORCEINLINE friend bool operator==(const vector& x, const vector& y) { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); } //! Effects: Returns true if x and y are unequal //! //! Complexity: Linear to the number of elements in the container. BOOST_CONTAINER_FORCEINLINE friend bool operator!=(const vector& x, const vector& y) { return !(x == y); } //! Effects: Returns true if x is less than y //! //! Complexity: Linear to the number of elements in the container. friend bool operator<(const vector& x, const vector& y) { const_iterator first1(x.cbegin()), first2(y.cbegin()); const const_iterator last1(x.cend()), last2(y.cend()); for ( ; (first1 != last1) && (first2 != last2); ++first1, ++first2 ) { if (*first1 < *first2) return true; if (*first2 < *first1) return false; } return (first1 == last1) && (first2 != last2); } //! Effects: Returns true if x is greater than y //! //! Complexity: Linear to the number of elements in the container. BOOST_CONTAINER_FORCEINLINE friend bool operator>(const vector& x, const vector& y) { return y < x; } //! Effects: Returns true if x is equal or less than y //! //! Complexity: Linear to the number of elements in the container. BOOST_CONTAINER_FORCEINLINE friend bool operator<=(const vector& x, const vector& y) { return !(y < x); } //! Effects: Returns true if x is equal or greater than y //! //! Complexity: Linear to the number of elements in the container. BOOST_CONTAINER_FORCEINLINE friend bool operator>=(const vector& x, const vector& y) { return !(x < y); } //! Effects: x.swap(y) //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE friend void swap(vector& x, vector& y) { x.swap(y); } #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory //! (memory expansion) that will not invalidate iterators. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy/move constructor throws. //! //! Note: Non-standard extension. bool stable_reserve(size_type new_cap) { const size_type cp = this->capacity(); return cp >= new_cap || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(new_cap - cp)); } //Absolutely experimental. This function might change, disappear or simply crash! template BOOST_CONTAINER_FORCEINLINE void insert_ordered_at(const size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it) { typedef vector_insert_ordered_cursor inserter_t; return this->priv_insert_ordered_at(element_count, inserter_t(last_position_it, last_value_it)); } template BOOST_CONTAINER_FORCEINLINE void merge(InputIt first, InputIt last) { this->merge(first, last, value_less_t()); } template BOOST_CONTAINER_FORCEINLINE void merge(InputIt first, InputIt last, Compare comp) { size_type const s = this->size(); size_type const c = this->capacity(); size_type n = 0; size_type const free_cap = c - s; //If not input iterator and new elements don't fit in the remaining capacity, merge in new buffer if(!dtl::is_input_iterator::value && free_cap < (n = static_cast(boost::container::iterator_distance(first, last)))){ this->priv_merge_in_new_buffer(first, n, comp, alloc_version()); } else{ this->insert(this->cend(), first, last); T *const raw_beg = this->priv_raw_begin(); T *const raw_end = this->priv_raw_end(); T *const raw_pos = raw_beg + s; boost::movelib::adaptive_merge(raw_beg, raw_pos, raw_end, comp, raw_end, free_cap - n); } } template BOOST_CONTAINER_FORCEINLINE void merge_unique(InputIt first, InputIt last) { this->merge_unique(first, last, value_less_t()); } template BOOST_CONTAINER_FORCEINLINE void merge_unique(InputIt first, InputIt last, Compare comp) { size_type const old_size = this->size(); this->priv_set_difference_back(first, last, comp); T *const raw_beg = this->priv_raw_begin(); T *const raw_end = this->priv_raw_end(); T *raw_pos = raw_beg + old_size; boost::movelib::adaptive_merge(raw_beg, raw_pos, raw_end, comp, raw_end, this->capacity() - this->size()); } private: template void priv_insert_ordered_at(const size_type element_count, PositionValue position_value) { const size_type old_size_pos = this->size(); this->reserve(old_size_pos + element_count); T* const begin_ptr = this->priv_raw_begin(); size_type insertions_left = element_count; size_type prev_pos = old_size_pos; size_type old_hole_size = element_count; //Exception rollback. If any copy throws before the hole is filled, values //already inserted/copied at the end of the buffer will be destroyed. typename value_traits::ArrayDestructor past_hole_values_destroyer (begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u)); //Loop for each insertion backwards, first moving the elements after the insertion point, //then inserting the element. while(insertions_left){ --position_value; size_type const pos = position_value.get_pos(); BOOST_ASSERT(pos != size_type(-1) && pos <= old_size_pos && pos <= prev_pos); //If needed shift the range after the insertion point and the previous insertion point. //Function will take care if the shift crosses the size() boundary, using copy/move //or uninitialized copy/move if necessary. size_type new_hole_size = (pos != prev_pos) ? priv_insert_ordered_at_shift_range(pos, prev_pos, this->size(), insertions_left) : old_hole_size ; if(new_hole_size){ //The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards past_hole_values_destroyer.increment_size_backwards(prev_pos - pos); //Insert the new value in the hole allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, position_value.get_val()); if(--new_hole_size){ //The hole was reduced by the new insertion by one past_hole_values_destroyer.increment_size_backwards(size_type(1u)); } else{ //Hole was just filled, disable exception rollback and change vector size past_hole_values_destroyer.release(); this->m_holder.m_size += element_count; } } else{ if(old_hole_size){ //Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size past_hole_values_destroyer.release(); this->m_holder.m_size += element_count; } //Insert the new value in the already constructed range begin_ptr[pos + insertions_left - 1] = position_value.get_val(); } --insertions_left; old_hole_size = new_hole_size; prev_pos = pos; } } template void priv_set_difference_back(InputIt first1, InputIt last1, Compare comp) { T * old_first2 = this->priv_raw_begin(); T * first2 = old_first2; T * last2 = this->priv_raw_end(); while (first1 != last1) { if (first2 == last2){ this->insert(this->cend(), first1, last1); return; } if (comp(*first1, *first2)) { this->emplace_back(*first1); T * const raw_begin = this->priv_raw_begin(); if(old_first2 != raw_begin) { //Reallocation happened, update range first2 = raw_begin + (first2 - old_first2); last2 = raw_begin + (last2 - old_first2); old_first2 = raw_begin; } ++first1; } else { if (!comp(*first2, *first1)) { ++first1; } ++first2; } } } template BOOST_CONTAINER_FORCEINLINE void priv_merge_in_new_buffer(FwdIt, size_type, Compare, version_0) { alloc_holder_t::on_capacity_overflow(); } template void priv_merge_in_new_buffer(FwdIt first, size_type n, Compare comp, Version) { size_type const new_size = this->size() + n; size_type new_cap = new_size; pointer p = pointer(); pointer const new_storage = this->m_holder.allocation_command(allocate_new, new_size, new_cap, p); BOOST_ASSERT((new_cap >= this->size() ) && (new_cap - this->size()) >= n); allocator_type &a = this->m_holder.alloc(); typename value_traits::ArrayDeallocator new_buffer_deallocator(new_storage, a, new_cap); typename value_traits::ArrayDestructor new_values_destroyer(new_storage, a, 0u); T* pbeg = this->priv_raw_begin(); size_type const old_size = this->size(); T* const pend = pbeg + old_size; T* d_first = boost::movelib::to_raw_pointer(new_storage); size_type added = n; //Merge in new buffer loop while(1){ if(!n) { ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pbeg, pend, d_first); break; } else if(pbeg == pend) { ::boost::container::uninitialized_move_alloc_n(this->m_holder.alloc(), first, n, d_first); break; } //maintain stability moving external values only if they are strictly less else if(comp(*first, *pbeg)) { allocator_traits_type::construct( this->m_holder.alloc(), d_first, *first ); new_values_destroyer.increment_size(1u); ++first; --n; ++d_first; } else{ allocator_traits_type::construct( this->m_holder.alloc(), d_first, boost::move(*pbeg) ); new_values_destroyer.increment_size(1u); ++pbeg; ++d_first; } } //Nothrow operations pointer const old_p = this->m_holder.start(); size_type const old_cap = this->m_holder.capacity(); boost::container::destroy_alloc_n(a, boost::movelib::to_raw_pointer(old_p), old_size); if (old_cap > 0) { this->m_holder.deallocate(old_p, old_cap); } this->m_holder.m_size = old_size + added; this->m_holder.start(new_storage); this->m_holder.capacity(new_cap); new_buffer_deallocator.release(); new_values_destroyer.release(); } BOOST_CONTAINER_FORCEINLINE bool room_enough() const { return this->m_holder.m_size < this->m_holder.capacity(); } BOOST_CONTAINER_FORCEINLINE pointer back_ptr() const { return this->m_holder.start() + this->m_holder.m_size; } size_type priv_index_of(pointer p) const { BOOST_ASSERT(this->m_holder.start() <= p); BOOST_ASSERT(p <= (this->m_holder.start()+this->size())); return static_cast(p - this->m_holder.start()); } template void priv_move_assign(BOOST_RV_REF_BEG vector BOOST_RV_REF_END x , typename dtl::enable_if_c < dtl::is_version::type, 0>::value >::type * = 0) { if(!dtl::is_same::type, allocator_type>::value && this->capacity() < x.size()){ alloc_holder_t::on_capacity_overflow(); } T* const this_start = this->priv_raw_begin(); T* const other_start = x.priv_raw_begin(); const size_type this_sz = m_holder.m_size; const size_type other_sz = static_cast(x.m_holder.m_size); boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz); this->m_holder.m_size = other_sz; } template void priv_move_assign(BOOST_RV_REF_BEG vector BOOST_RV_REF_END x , typename dtl::disable_if_or < void , dtl::is_version::type, 0> , dtl::is_different::type, allocator_type> >::type * = 0) { //for move assignment, no aliasing (&x != this) is assumed. //x.size() == 0 is allowed for buggy std libraries. BOOST_ASSERT(this != &x || x.size() == 0); allocator_type &this_alloc = this->m_holder.alloc(); allocator_type &x_alloc = x.m_holder.alloc(); const bool propagate_alloc = allocator_traits_type::propagate_on_container_move_assignment::value; const bool is_propagable_from_x = is_propagable_from(x_alloc, x.m_holder.start(), this_alloc, propagate_alloc); //Resources can be transferred if both allocators are //going to be equal after this function (either propagated or already equal) if(is_propagable_from_x){ this->clear(); if(BOOST_LIKELY(!!this->m_holder.m_start)) this->m_holder.deallocate(this->m_holder.m_start, this->m_holder.m_capacity); this->m_holder.steal_resources(x.m_holder); } //Else do a one by one move else{ this->assign( boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(x.begin())) , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(x.end() )) ); } //Move allocator if needed dtl::move_alloc(this_alloc, x_alloc, dtl::bool_()); } template void priv_copy_assign(const vector &x , typename dtl::enable_if_c < dtl::is_version::type, 0>::value >::type * = 0) { if(!dtl::is_same::type, allocator_type>::value && this->capacity() < x.size()){ alloc_holder_t::on_capacity_overflow(); } T* const this_start = this->priv_raw_begin(); T* const other_start = x.priv_raw_begin(); const size_type this_sz = m_holder.m_size; const size_type other_sz = static_cast(x.m_holder.m_size); boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz); this->m_holder.m_size = other_sz; } template typename dtl::disable_if_or < void , dtl::is_version::type, 0> , dtl::is_different::type, allocator_type> >::type priv_copy_assign(const vector &x) { allocator_type &this_alloc = this->m_holder.alloc(); const allocator_type &x_alloc = x.m_holder.alloc(); dtl::bool_ flag; if(flag && this_alloc != x_alloc){ this->clear(); this->shrink_to_fit(); } dtl::assign_alloc(this_alloc, x_alloc, flag); this->assign( x.priv_raw_begin(), x.priv_raw_end() ); } template //Template it to avoid it in explicit instantiations void priv_swap(Vector &x, dtl::true_type) //version_0 { this->m_holder.deep_swap(x.m_holder); } template //Template it to avoid it in explicit instantiations void priv_swap(Vector &x, dtl::false_type) //version_N { const bool propagate_alloc = allocator_traits_type::propagate_on_container_swap::value; if(are_swap_propagable( this->get_stored_allocator(), this->m_holder.start() , x.get_stored_allocator(), x.m_holder.start(), propagate_alloc)){ //Just swap internals this->m_holder.swap_resources(x.m_holder); } else{ if (BOOST_UNLIKELY(&x == this)) return; //Else swap element by element... bool const t_smaller = this->size() < x.size(); vector &sml = t_smaller ? *this : x; vector &big = t_smaller ? x : *this; size_type const common_elements = sml.size(); for(size_type i = 0; i != common_elements; ++i){ boost::adl_move_swap(sml[i], big[i]); } //... and move-insert the remaining range sml.insert( sml.cend() , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(big.nth(common_elements))) , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(big.end())) ); //Destroy remaining elements big.erase(big.nth(common_elements), big.cend()); } //And now swap the allocator dtl::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), dtl::bool_()); } void priv_reserve_no_capacity(size_type, version_0) { alloc_holder_t::on_capacity_overflow(); } dtl::insert_range_proxy, T*> priv_dummy_empty_proxy() { return dtl::insert_range_proxy, T*> (::boost::make_move_iterator((T *)0)); } void priv_reserve_no_capacity(size_type new_cap, version_1) { //There is not enough memory, allocate a new buffer //Pass the hint so that allocators can take advantage of this. pointer const p = this->m_holder.allocate(new_cap); //We will reuse insert code, so create a dummy input iterator this->priv_forward_range_insert_new_allocation ( boost::movelib::to_raw_pointer(p), new_cap, this->priv_raw_end(), 0, this->priv_dummy_empty_proxy()); } void priv_reserve_no_capacity(size_type new_cap, version_2) { //There is not enough memory, allocate a new //buffer or expand the old one. bool same_buffer_start; size_type real_cap = 0; pointer reuse(this->m_holder.start()); pointer const ret(this->m_holder.allocation_command(allocate_new | expand_fwd | expand_bwd, new_cap, real_cap = new_cap, reuse)); //Check for forward expansion same_buffer_start = reuse && this->m_holder.start() == ret; if(same_buffer_start){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->m_holder.capacity(real_cap); } else{ //If there is no forward expansion, move objects, we will reuse insertion code T * const new_mem = boost::movelib::to_raw_pointer(ret); T * const ins_pos = this->priv_raw_end(); if(reuse){ //Backwards (and possibly forward) expansion #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_bwd; #endif this->priv_forward_range_insert_expand_backwards ( new_mem , real_cap, ins_pos, 0, this->priv_dummy_empty_proxy()); } else{ //New buffer #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_forward_range_insert_new_allocation ( new_mem, real_cap, ins_pos, 0, this->priv_dummy_empty_proxy()); } } } void priv_destroy_last(const bool moved = false) BOOST_NOEXCEPT_OR_NOTHROW { (void)moved; const bool skip_destructor = value_traits::trivial_dctr || (value_traits::trivial_dctr_after_move && moved); if(!skip_destructor){ value_type* const p = this->priv_raw_end() - 1; allocator_traits_type::destroy(this->get_stored_allocator(), p); } --this->m_holder.m_size; } void priv_destroy_last_n(const size_type n) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(n <= this->m_holder.m_size); if(!value_traits::trivial_dctr){ T* const destroy_pos = this->priv_raw_begin() + (this->m_holder.m_size-n); boost::container::destroy_alloc_n(this->get_stored_allocator(), destroy_pos, n); } this->m_holder.m_size -= n; } template void priv_uninitialized_construct_at_end(InpIt first, InpIt last) { T* const old_end_pos = this->priv_raw_end(); T* const new_end_pos = boost::container::uninitialized_copy_alloc(this->m_holder.alloc(), first, last, old_end_pos); this->m_holder.m_size += new_end_pos - old_end_pos; } void priv_destroy_all() BOOST_NOEXCEPT_OR_NOTHROW { boost::container::destroy_alloc_n (this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size); this->m_holder.m_size = 0; } template iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) x) { BOOST_ASSERT(this->priv_in_range_or_end(p)); return this->priv_forward_range_insert ( vector_iterator_get_ptr(p), 1, dtl::get_insert_value_proxy(::boost::forward(x))); } BOOST_CONTAINER_FORCEINLINE dtl::insert_copy_proxy priv_single_insert_proxy(const T &x) { return dtl::insert_copy_proxy (x); } BOOST_CONTAINER_FORCEINLINE dtl::insert_move_proxy priv_single_insert_proxy(BOOST_RV_REF(T) x) { return dtl::insert_move_proxy (x); } template void priv_push_back(BOOST_FWD_REF(U) u) { if (BOOST_LIKELY(this->room_enough())){ //There is more memory, just construct a new object at the end allocator_traits_type::construct ( this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward(u) ); ++this->m_holder.m_size; } else{ this->priv_forward_range_insert_no_capacity ( this->back_ptr(), 1 , this->priv_single_insert_proxy(::boost::forward(u)), alloc_version()); } } BOOST_CONTAINER_FORCEINLINE dtl::insert_n_copies_proxy priv_resize_proxy(const T &x) { return dtl::insert_n_copies_proxy(x); } BOOST_CONTAINER_FORCEINLINE dtl::insert_default_initialized_n_proxy priv_resize_proxy(default_init_t) { return dtl::insert_default_initialized_n_proxy(); } BOOST_CONTAINER_FORCEINLINE dtl::insert_value_initialized_n_proxy priv_resize_proxy(value_init_t) { return dtl::insert_value_initialized_n_proxy(); } template void priv_resize(size_type new_size, const U& u) { const size_type sz = this->size(); if (new_size < sz){ //Destroy last elements this->priv_destroy_last_n(sz - new_size); } else{ const size_type n = new_size - this->size(); this->priv_forward_range_insert_at_end(n, this->priv_resize_proxy(u), alloc_version()); } } BOOST_CONTAINER_FORCEINLINE void priv_shrink_to_fit(version_0) BOOST_NOEXCEPT_OR_NOTHROW {} void priv_shrink_to_fit(version_1) { const size_type cp = this->m_holder.capacity(); if(cp){ const size_type sz = this->size(); if(!sz){ if(BOOST_LIKELY(!!this->m_holder.m_start)) this->m_holder.deallocate(this->m_holder.m_start, cp); this->m_holder.m_start = pointer(); this->m_holder.m_capacity = 0; } else if(sz < cp){ //Allocate a new buffer. //Pass the hint so that allocators can take advantage of this. pointer const p = this->m_holder.allocate(sz); //We will reuse insert code, so create a dummy input iterator #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_forward_range_insert_new_allocation ( boost::movelib::to_raw_pointer(p), sz , this->priv_raw_begin(), 0, this->priv_dummy_empty_proxy()); } } } void priv_shrink_to_fit(version_2) BOOST_NOEXCEPT_OR_NOTHROW { const size_type cp = this->m_holder.capacity(); if(cp){ const size_type sz = this->size(); if(!sz){ if(BOOST_LIKELY(!!this->m_holder.m_start)) this->m_holder.deallocate(this->m_holder.m_start, cp); this->m_holder.m_start = pointer(); this->m_holder.m_capacity = 0; } else{ size_type received_size = sz; pointer reuse(this->m_holder.start()); if(this->m_holder.allocation_command (shrink_in_place | nothrow_allocation, cp, received_size, reuse)){ this->m_holder.capacity(received_size); #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_shrink; #endif } } } } template iterator priv_forward_range_insert_no_capacity (const pointer &pos, const size_type, const InsertionProxy , version_0) { alloc_holder_t::on_capacity_overflow(); return iterator(pos); } template iterator priv_forward_range_insert_no_capacity (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, version_1) { //Check if we have enough memory or try to expand current memory const size_type n_pos = pos - this->m_holder.start(); T *const raw_pos = boost::movelib::to_raw_pointer(pos); const size_type new_cap = this->m_holder.template next_capacity(n); //Pass the hint so that allocators can take advantage of this. T * const new_buf = boost::movelib::to_raw_pointer(this->m_holder.allocate(new_cap)); #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_forward_range_insert_new_allocation ( new_buf, new_cap, raw_pos, n, insert_range_proxy); return iterator(this->m_holder.start() + n_pos); } template iterator priv_forward_range_insert_no_capacity (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, version_2) { //Check if we have enough memory or try to expand current memory T *const raw_pos = boost::movelib::to_raw_pointer(pos); const size_type n_pos = raw_pos - this->priv_raw_begin(); //There is not enough memory, allocate a new //buffer or expand the old one. size_type real_cap = this->m_holder.template next_capacity(n); pointer reuse(this->m_holder.start()); pointer const ret (this->m_holder.allocation_command (allocate_new | expand_fwd | expand_bwd, this->m_holder.m_size + n, real_cap, reuse)); //Buffer reallocated if(reuse){ //Forward expansion, delay insertion if(this->m_holder.start() == ret){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->m_holder.capacity(real_cap); //Expand forward this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy); } //Backwards (and possibly forward) expansion else{ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_bwd; #endif this->priv_forward_range_insert_expand_backwards (boost::movelib::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy); } } //New buffer else{ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_forward_range_insert_new_allocation ( boost::movelib::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy); } return iterator(this->m_holder.start() + n_pos); } template iterator priv_forward_range_insert (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy) { BOOST_ASSERT(this->m_holder.capacity() >= this->m_holder.m_size); //Check if we have enough memory or try to expand current memory const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size; bool same_buffer_start = n <= remaining; if (!same_buffer_start){ return priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version()); } else{ //Expand forward T *const raw_pos = boost::movelib::to_raw_pointer(pos); const size_type n_pos = raw_pos - this->priv_raw_begin(); this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy); return iterator(this->m_holder.start() + n_pos); } } template iterator priv_forward_range_insert_at_end (const size_type n, const InsertionProxy insert_range_proxy, version_0) { //Check if we have enough memory or try to expand current memory const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size; if (n > remaining){ //This will trigger an error alloc_holder_t::on_capacity_overflow(); } this->priv_forward_range_insert_at_end_expand_forward(n, insert_range_proxy); return this->end(); } template BOOST_CONTAINER_FORCEINLINE iterator priv_forward_range_insert_at_end (const size_type n, const InsertionProxy insert_range_proxy, AllocVersion) { return this->priv_forward_range_insert(this->back_ptr(), n, insert_range_proxy); } //Takes the range pointed by [first_pos, last_pos) and shifts it to the right //by 'shift_count'. 'limit_pos' marks the end of constructed elements. // //Precondition: first_pos <= last_pos <= limit_pos // //The shift operation might cross limit_pos so elements to moved beyond limit_pos //are uninitialized_moved with an allocator. Other elements are moved. // //The shift operation might left uninitialized elements after limit_pos //and the number of uninitialized elements is returned by the function. // //Old situation: // first_pos last_pos old_limit // | | | // ____________V_______V__________________V_____________ //| prefix | range | suffix |raw_mem ~ //|____________|_______|__________________|_____________~ // //New situation in Case A (hole_size == 0): // range is moved through move assignments // // first_pos last_pos limit_pos // | | | // ____________V_______V__________________V_____________ //| prefix' | | | range |suffix'|raw_mem ~ //|________________+______|___^___|_______|_____________~ // | | // |_>_>_>_>_>^ // // //New situation in Case B (hole_size >= 0): // range is moved through uninitialized moves // // first_pos last_pos limit_pos // | | | // ____________V_______V__________________V________________ //| prefix' | | | [hole] | range | //|_______________________________________|________|___^___| // | | // |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^ // //New situation in Case C (hole_size == 0): // range is moved through move assignments and uninitialized moves // // first_pos last_pos limit_pos // | | | // ____________V_______V__________________V___ //| prefix' | | | range | //|___________________________________|___^___| // | | // |_>_>_>_>_>_>_>_>_>_>_>^ size_type priv_insert_ordered_at_shift_range (size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count) { BOOST_ASSERT(first_pos <= last_pos); BOOST_ASSERT(last_pos <= limit_pos); // T* const begin_ptr = this->priv_raw_begin(); T* const first_ptr = begin_ptr + first_pos; T* const last_ptr = begin_ptr + last_pos; size_type hole_size = 0; //Case A: if((last_pos + shift_count) <= limit_pos){ //All move assigned boost::container::move_backward(first_ptr, last_ptr, last_ptr + shift_count); } //Case B: else if((first_pos + shift_count) >= limit_pos){ //All uninitialized_moved ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count); hole_size = first_pos + shift_count - limit_pos; } //Case C: else{ //Some uninitialized_moved T* const limit_ptr = begin_ptr + limit_pos; T* const boundary_ptr = limit_ptr - shift_count; ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr); //The rest is move assigned boost::container::move_backward(first_ptr, boundary_ptr, limit_ptr); } return hole_size; } private: BOOST_CONTAINER_FORCEINLINE T *priv_raw_begin() const { return boost::movelib::to_raw_pointer(m_holder.start()); } BOOST_CONTAINER_FORCEINLINE T* priv_raw_end() const { return this->priv_raw_begin() + this->m_holder.m_size; } template void priv_forward_range_insert_at_end_expand_forward(const size_type n, InsertionProxy insert_range_proxy) { T* const old_finish = this->priv_raw_end(); insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n); this->m_holder.m_size += n; } template void priv_forward_range_insert_expand_forward(T* const pos, const size_type n, InsertionProxy insert_range_proxy) { //n can't be 0, because there is nothing to do in that case if(BOOST_UNLIKELY(!n)) return; //There is enough memory T* const old_finish = this->priv_raw_end(); const size_type elems_after = old_finish - pos; if (!elems_after){ insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n); this->m_holder.m_size += n; } else if (elems_after >= n){ //New elements can be just copied. //Move to uninitialized memory last objects ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), old_finish - n, old_finish, old_finish); this->m_holder.m_size += n; //Copy previous to last objects to the initialized end boost::container::move_backward(pos, old_finish - n, old_finish); //Insert new objects in the pos insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n); } else { //The new elements don't fit in the [pos, end()) range. //Copy old [pos, end()) elements to the uninitialized memory (a gap is created) ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pos, old_finish, pos + n); BOOST_TRY{ //Copy first new elements in pos (gap is still there) insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elems_after); //Copy to the beginning of the unallocated zone the last new elements (the gap is closed). insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n - elems_after); this->m_holder.m_size += n; } BOOST_CATCH(...){ boost::container::destroy_alloc_n(this->get_stored_allocator(), pos + n, elems_after); BOOST_RETHROW } BOOST_CATCH_END } } template void priv_forward_range_insert_new_allocation (T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy) { //n can be zero, if we want to reallocate! T *new_finish = new_start; T *old_finish; //Anti-exception rollbacks typename value_traits::ArrayDeallocator new_buffer_deallocator(new_start, this->m_holder.alloc(), new_cap); typename value_traits::ArrayDestructor new_values_destroyer(new_start, this->m_holder.alloc(), 0u); //Initialize with [begin(), pos) old buffer //the start of the new buffer T * const old_buffer = this->priv_raw_begin(); if(old_buffer){ new_finish = ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), this->priv_raw_begin(), pos, old_finish = new_finish); new_values_destroyer.increment_size(new_finish - old_finish); } //Initialize new objects, starting from previous point old_finish = new_finish; insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n); new_finish += n; new_values_destroyer.increment_size(new_finish - old_finish); //Initialize from the rest of the old buffer, //starting from previous point if(old_buffer){ new_finish = ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), pos, old_buffer + this->m_holder.m_size, new_finish); //Destroy and deallocate old elements //If there is allocated memory, destroy and deallocate if(!value_traits::trivial_dctr_after_move) boost::container::destroy_alloc_n(this->get_stored_allocator(), old_buffer, this->m_holder.m_size); this->m_holder.deallocate(this->m_holder.start(), this->m_holder.capacity()); } this->m_holder.start(new_start); this->m_holder.m_size = size_type(new_finish - new_start); this->m_holder.capacity(new_cap); //All construction successful, disable rollbacks new_values_destroyer.release(); new_buffer_deallocator.release(); } template void priv_forward_range_insert_expand_backwards (T* const new_start, const size_type new_capacity, T* const pos, const size_type n, InsertionProxy insert_range_proxy) { //n can be zero to just expand capacity //Backup old data T* const old_start = this->priv_raw_begin(); const size_type old_size = this->m_holder.m_size; T* const old_finish = old_start + old_size; //We can have 8 possibilities: const size_type elemsbefore = static_cast(pos - old_start); const size_type s_before = static_cast(old_start - new_start); const size_type before_plus_new = elemsbefore + n; //Update the vector buffer information to a safe state this->m_holder.start(new_start); this->m_holder.capacity(new_capacity); this->m_holder.m_size = 0; //If anything goes wrong, this object will destroy //all the old objects to fulfill previous vector state typename value_traits::ArrayDestructor old_values_destroyer(old_start, this->m_holder.alloc(), old_size); //Check if s_before is big enough to hold the beginning of old data + new data if(s_before >= before_plus_new){ //Copy first old values before pos, after that the new objects T *const new_elem_pos = ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), old_start, pos, new_start); this->m_holder.m_size = elemsbefore; insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_elem_pos, n); this->m_holder.m_size = before_plus_new; const size_type new_size = old_size + n; //Check if s_before is so big that even copying the old data + new data //there is a gap between the new data and the old data if(s_before >= new_size){ //Old situation: // _________________________________________________________ //| raw_mem | old_begin | old_end | //| __________________________________|___________|_________| // //New situation: // _________________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|__________|_________|________________________| // //Now initialize the rest of memory with the last old values if(before_plus_new != new_size){ //Special case to avoid operations in back insertion ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), pos, old_finish, new_start + before_plus_new); //All new elements correctly constructed, avoid new element destruction this->m_holder.m_size = new_size; } //Old values destroyed automatically with "old_values_destroyer" //when "old_values_destroyer" goes out of scope unless the have trivial //destructor after move. if(value_traits::trivial_dctr_after_move) old_values_destroyer.release(); } //s_before is so big that divides old_end else{ //Old situation: // __________________________________________________ //| raw_mem | old_begin | old_end | //| ___________________________|___________|_________| // //New situation: // __________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|__________|_________|_________________| // //Now initialize the rest of memory with the last old values //All new elements correctly constructed, avoid new element destruction const size_type raw_gap = s_before - before_plus_new; if(!value_traits::trivial_dctr){ //Now initialize the rest of s_before memory with the //first of elements after new values ::boost::container::uninitialized_move_alloc_n (this->m_holder.alloc(), pos, raw_gap, new_start + before_plus_new); //Now we have a contiguous buffer so program trailing element destruction //and update size to the final size. old_values_destroyer.shrink_forward(new_size-s_before); this->m_holder.m_size = new_size; //Now move remaining last objects in the old buffer begin T * const remaining_pos = pos + raw_gap; if(remaining_pos != old_start){ //Make sure data has to be moved ::boost::container::move(remaining_pos, old_finish, old_start); } //Once moved, avoid calling the destructors if trivial after move if(value_traits::trivial_dctr_after_move){ old_values_destroyer.release(); } } else{ //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy ::boost::container::uninitialized_move_alloc_n (this->m_holder.alloc(), pos, static_cast(old_finish - pos), new_start + before_plus_new); this->m_holder.m_size = new_size; old_values_destroyer.release(); } } } else{ //Check if we have to do the insertion in two phases //since maybe s_before is not big enough and //the buffer was expanded both sides // //Old situation: // _________________________________________________ //| raw_mem | old_begin + old_end | raw_mem | //|_________|_____________________|_________________| // //New situation with do_after: // _________________________________________________ //| old_begin + new + old_end | raw_mem | //|___________________________________|_____________| // //New without do_after: // _________________________________________________ //| old_begin + new + old_end | raw_mem | //|____________________________|____________________| // const bool do_after = n > s_before; //Now we can have two situations: the raw_mem of the //beginning divides the old_begin, or the new elements: if (s_before <= elemsbefore) { //The raw memory divides the old_begin group: // //If we need two phase construction (do_after) //new group is divided in new = new_beg + new_end groups //In this phase only new_beg will be inserted // //Old situation: // _________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|_________|___________|_________|_________________| // //New situation with do_after(1): //This is not definitive situation, the second phase //will include // _________________________________________________ //| old_begin | new_beg | old_end | raw_mem | //|___________|_________|_________|_________________| // //New situation without do_after: // _________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|_____|_________|_____________________| // //Copy the first part of old_begin to raw_mem ::boost::container::uninitialized_move_alloc_n (this->m_holder.alloc(), old_start, s_before, new_start); //The buffer is all constructed until old_end, //so program trailing destruction and assign final size //if !do_after, s_before+n otherwise. size_type new_1st_range; if(do_after){ new_1st_range = s_before; //release destroyer and update size old_values_destroyer.release(); } else{ new_1st_range = n; if(value_traits::trivial_dctr_after_move) old_values_destroyer.release(); else{ old_values_destroyer.shrink_forward(old_size - (s_before - n)); } } this->m_holder.m_size = old_size + new_1st_range; //Now copy the second part of old_begin overwriting itself T *const next = ::boost::container::move(old_start + s_before, pos, old_start); //Now copy the new_beg elements insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), next, new_1st_range); //If there is no after work and the last old part needs to be moved to front, do it if(!do_after && (n != s_before)){ //Now displace old_end elements ::boost::container::move(pos, old_finish, next + new_1st_range); } } else { //If we have to expand both sides, //we will play if the first new values so //calculate the upper bound of new values //The raw memory divides the new elements // //If we need two phase construction (do_after) //new group is divided in new = new_beg + new_end groups //In this phase only new_beg will be inserted // //Old situation: // _______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|_______________|___________|_________|_________________| // //New situation with do_after(): // ____________________________________________________ //| old_begin | new_beg | old_end | raw_mem | //|___________|_______________|_________|______________| // //New situation without do_after: // ______________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|_____|_________|__________________________| // //First copy whole old_begin and part of new to raw_mem T * const new_pos = ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), old_start, pos, new_start); this->m_holder.m_size = elemsbefore; const size_type mid_n = s_before - elemsbefore; insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_pos, mid_n); //The buffer is all constructed until old_end, //release destroyer this->m_holder.m_size = old_size + s_before; old_values_destroyer.release(); if(do_after){ //Copy new_beg part insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, elemsbefore); } else{ //Copy all new elements const size_type rest_new = n - mid_n; insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, rest_new); T* const move_start = old_start + rest_new; //Displace old_end, but make sure data has to be moved T* const move_end = move_start != pos ? ::boost::container::move(pos, old_finish, move_start) : old_finish; //Destroy remaining moved elements from old_end except if they //have trivial destructor after being moved size_type n_destroy = s_before - n; if(!value_traits::trivial_dctr_after_move) boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy); this->m_holder.m_size -= n_destroy; } } //This is only executed if two phase construction is needed if(do_after){ //The raw memory divides the new elements // //Old situation: // ______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|______________| // //New situation with do_after(1): // _______________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_________|________|_________| // //New situation with do_after(2): // ______________________________________________________ //| old_begin + new | old_end |raw | //|_______________________________________|_________|____| // const size_type n_after = n - s_before; const size_type elemsafter = old_size - elemsbefore; //We can have two situations: if (elemsafter >= n_after){ //The raw_mem from end will divide displaced old_end // //Old situation: // ______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|______________| // //New situation with do_after(1): // _______________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_________|________|_________| // //First copy the part of old_end raw_mem T* finish_n = old_finish - n_after; ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), finish_n, old_finish, old_finish); this->m_holder.m_size += n_after; //Displace the rest of old_end to the new position boost::container::move_backward(pos, finish_n, old_finish); //Now overwrite with new_end //The new_end part is [first + (n - n_after), last) insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n_after); } else { //The raw_mem from end will divide new_end part // //Old situation: // _____________________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|_____________________| // //New situation with do_after(2): // _____________________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_______________|________|_________| // const size_type mid_last_dist = n_after - elemsafter; //First initialize data in raw memory //Copy to the old_end part to the uninitialized zone leaving a gap. ::boost::container::uninitialized_move_alloc (this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist); typename value_traits::ArrayDestructor old_end_destroyer (old_finish + mid_last_dist, this->m_holder.alloc(), old_finish - pos); //Copy the first part to the already constructed old_end zone insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elemsafter); //Copy the rest to the uninitialized zone filling the gap insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, mid_last_dist); this->m_holder.m_size += n_after; old_end_destroyer.release(); } } } } void priv_throw_if_out_of_range(size_type n) const { //If n is out of range, throw an out_of_range exception if (n >= this->size()){ throw_out_of_range("vector::at out of range"); } } BOOST_CONTAINER_FORCEINLINE bool priv_in_range(const_iterator pos) const { return (this->begin() <= pos) && (pos < this->end()); } BOOST_CONTAINER_FORCEINLINE bool priv_in_range_or_end(const_iterator pos) const { return (this->begin() <= pos) && (pos <= this->end()); } #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS public: unsigned int num_expand_fwd; unsigned int num_expand_bwd; unsigned int num_shrink; unsigned int num_alloc; void reset_alloc_stats() { num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; } #endif #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED }; #ifndef BOOST_CONTAINER_NO_CXX17_CTAD template vector(InputIterator, InputIterator) -> vector::value_type>; template vector(InputIterator, InputIterator, Allocator const&) -> vector::value_type, Allocator>; #endif }} //namespace boost::container #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { typedef typename boost::container::vector::allocator_type allocator_type; typedef typename ::boost::container::allocator_traits::pointer pointer; static const bool value = ::boost::has_trivial_destructor_after_move::value && ::boost::has_trivial_destructor_after_move::value; }; } #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED #include #endif // #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP