[/ Boost.Optional Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ] [section Detailed Semantics - Optional Values] [note The following section contains various `assert()` which are used only to show the postconditions as sample code. It is not implied that the type `T` must support each particular expression but that if the expression is supported, the implied condition holds. ] __SPACE__ [#reference_optional_constructor] [: `optional::optional() noexcept;`] * [*Effect:] Default-Constructs an `optional`. * [*Postconditions:] `*this` is [_uninitialized]. * [*Notes:] T's default constructor [_is not] called. * [*Example:] `` optional def ; assert ( !def ) ; `` __SPACE__ [#reference_optional_constructor_none_t] [: `optional::optional( none_t ) noexcept;`] * [*Effect:] Constructs an `optional` uninitialized. * [*Postconditions:] `*this` is [_uninitialized]. * [*Notes:] `T`'s default constructor [_is not] called. The expression `boost::none` denotes an instance of `boost::none_t` that can be used as the parameter. * [*Example:] `` #include optional n(none) ; assert ( !n ) ; `` __SPACE__ [#reference_optional_constructor_value] [: `optional::optional( T const& v )`] * [*Requires:] `is_copy_constructible::value` is `true`. * [*Effect:] Directly-Constructs an `optional`. * [*Postconditions:] `*this` is [_initialized] and its value is a ['copy] of `v`. * [*Throws:] Whatever `T::T( T const& )` throws. * [*Notes: ] `T::T( T const& )` is called. * [*Exception Safety:] Exceptions can only be thrown during `T::T( T const& );` in that case, this constructor has no effect. * [*Example:] `` T v; optional opt(v); assert ( *opt == v ) ; `` __SPACE__ [#reference_optional_constructor_move_value] [: `optional::optional( T&& v )`] * [*Requires:] `is_move_constructible::value` is `true`. * [*Effect:] Directly-Move-Constructs an `optional`. * [*Postconditions:] `*this` is [_initialized] and its value is move-constructed from `v`. * [*Throws:] Whatever `T::T( T&& )` throws. * [*Notes: ] `T::T( T&& )` is called. * [*Exception Safety:] Exceptions can only be thrown during `T::T( T&& );` in that case, the state of `v` is determined by exception safety guarantees for `T::T(T&&)`. * [*Example:] `` T v1, v2; optional opt(std::move(v1)); assert ( *opt == v2 ) ; `` __SPACE__ [#reference_optional_constructor_bool_value] [: `optional::optional( bool condition, T const& v ) ;` ] * If condition is true, same as: [: `optional::optional( T const& v )`] * otherwise, same as: [: `optional::optional()`] __SPACE__ [#reference_optional_constructor_optional] [: `optional::optional( optional const& rhs );`] * [*Requires:] `is_copy_constructible::value` is `true`. * [*Effect:] Copy-Constructs an `optional`. * [*Postconditions:] If rhs is initialized, `*this` is initialized and its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized. * [*Throws:] Whatever `T::T( T const& )` throws. * [*Notes:] If rhs is initialized, `T::T(T const& )` is called. * [*Exception Safety:] Exceptions can only be thrown during `T::T( T const& );` in that case, this constructor has no effect. * [*Example:] `` optional uninit ; assert (!uninit); optional uinit2 ( uninit ) ; assert ( uninit2 == uninit ); optional init( T(2) ); assert ( *init == T(2) ) ; optional init2 ( init ) ; assert ( init2 == init ) ; `` __SPACE__ [#reference_optional_move_constructor_optional] [: `optional::optional( optional&& rhs ) noexcept(`['see below]`);`] * [*Requires:] `is_move_constructible::value` is `true`. * [*Effect:] Move-constructs an `optional`. * [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its value is move constructed from `rhs`; else `*this` is uninitialized. * [*Throws:] Whatever `T::T( T&& )` throws. * [*Remarks:] The expression inside `noexcept` is equivalent to `is_nothrow_move_constructible::value`. * [*Notes:] If `rhs` is initialized, `T::T( T && )` is called. * [*Exception Safety:] Exceptions can only be thrown during `T::T( T&& );` in that case, `rhs` remains initialized and the value of `*rhs` is determined by exception safety of `T::T(T&&)`. * [*Example:] `` optional> uninit ; assert (!uninit); optional> uinit2 ( std::move(uninit) ) ; assert ( uninit2 == uninit ); optional> init( std::uniqye_ptr(new T(2)) ); assert ( **init == T(2) ) ; optional> init2 ( std::move(init) ) ; assert ( init ); assert ( *init == nullptr ); assert ( init2 ); assert ( **init2 == T(2) ) ; `` __SPACE__ [#reference_optional_constructor_other_optional] [: `template explicit optional::optional( optional const& rhs );`] * [*Effect:] Copy-Constructs an `optional`. * [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its value is a ['copy] of the value of rhs converted to type `T`; else `*this` is uninitialized. * [*Throws:] Whatever `T::T( U const& )` throws. * [*Notes: ] `T::T( U const& )` is called if `rhs` is initialized, which requires a valid conversion from `U` to `T`. * [*Exception Safety:] Exceptions can only be thrown during `T::T( U const& );` in that case, this constructor has no effect. * [*Example:] `` optional x(123.4); assert ( *x == 123.4 ) ; optional y(x) ; assert( *y == 123 ) ; `` __SPACE__ [#reference_optional_move_constructor_other_optional] [: `template explicit optional::optional( optional&& rhs );`] * [*Effect:] Move-constructs an `optional`. * [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its value is move-constructed from `*rhs`; else `*this` is uninitialized. * [*Throws:] Whatever `T::T( U&& )` throws. * [*Notes: ] `T::T( U&& )` is called if `rhs` is initialized, which requires a valid conversion from `U` to `T`. * [*Exception Safety:] Exceptions can only be thrown during `T::T( U&& );` in that case, `rhs` remains initialized and the value of `*rhs` is determined by exception safety guarantee of `T::T( U&& )`. * [*Example:] `` optional x(123.4); assert ( *x == 123.4 ) ; optional y(std::move(x)) ; assert( *y == 123 ) ; `` __SPACE__ [#reference_optional_in_place_init] [: `template explicit optional::optional( in_place_init_t, Args&&... ars );`] * [*Requires:] `is_constructible_v` is `true`. * [*Effect:] Initializes the contained value as if direct-non-list-initializing an object of type `T` with the arguments `std::forward(args)...`. * [*Postconditions:] `*this` is initialized. * [*Throws:] Any exception thrown by the selected constructor of `T`. * [*Notes: ] `T` need not be __MOVE_CONSTRUCTIBLE__. On compilers that do not suppor variadic templates or rvalue references, this constuctor is available in limited functionality. For details [link optional_emplace_workaround see here]. * [*Example:] `` // creates an std::mutex using its default constructor optional om {in_place_init}; assert (om); // creates a unique_lock by calling unique_lock(*om, std::defer_lock) optional> ol {in_place_init, *om, std::defer_lock}; assert (ol); assert (!ol->owns_lock()); `` __SPACE__ [#reference_optional_in_place_init_if] [: `template explicit optional::optional( in_place_init_if_t, bool condition, Args&&... ars );`] * [*Requires:] `is_constructible_v` is `true`. * [*Effect:] If `condition` is `true`, initializes the contained value as if direct-non-list-initializing an object of type `T` with the arguments `std::forward(args)...`. * [*Postconditions:] `bool(*this) == condition`. * [*Throws:] Any exception thrown by the selected constructor of `T`. * [*Notes: ] `T` need not be __MOVE_CONSTRUCTIBLE__. On compilers that do not suppor variadic templates or rvalue references, this constuctor is available in limited functionality. For details [link optional_emplace_workaround see here]. * [*Example:] `` optional> ov1 {in_place_init_if, false, 3, "A"}; assert (!ov1); optional> ov2 {in_place_init_if, true, 3, "A"}; assert (ov2); assert (ov2->size() == 3); `` __SPACE__ [#reference_optional_constructor_factory] [: `template explicit optional::optional( InPlaceFactory const& f );`] [: `template explicit optional::optional( TypedInPlaceFactory const& f );`] * [*Effect:] Constructs an `optional` with a value of `T` obtained from the factory. * [*Postconditions: ] `*this` is [_initialized] and its value is ['directly given] from the factory `f` (i.e., the value [_is not copied]). * [*Throws:] Whatever the `T` constructor called by the factory throws. * [*Notes:] See [link boost_optional.tutorial.in_place_factories In-Place Factories] * [*Exception Safety:] Exceptions can only be thrown during the call to the `T` constructor used by the factory; in that case, this constructor has no effect. * [*Example:] `` class C { C ( char, double, std::string ) ; } ; C v('A',123.4,"hello"); optional x( in_place ('A', 123.4, "hello") ); // InPlaceFactory used optional y( in_place('A', 123.4, "hello") ); // TypedInPlaceFactory used assert ( *x == v ) ; assert ( *y == v ) ; `` __SPACE__ [#reference_optional_operator_equal_none_t] [: `optional& optional::operator= ( none_t ) noexcept;`] * [*Effect:] If `*this` is initialized destroys its contained value. * [*Postconditions: ] `*this` is uninitialized. __SPACE__ [#reference_optional_operator_equal_value] [: `optional& optional::operator= ( T const& rhs ) ;`] * [*Effect:] Assigns the value `rhs` to an `optional`. * [*Postconditions: ] `*this` is initialized and its value is a ['copy] of `rhs`. * [*Throws:] Whatever `T::operator=( T const& )` or `T::T(T const&)` throws. * [*Notes:] If `*this` was initialized, `T`'s assignment operator is used, otherwise, its copy-constructor is used. * [*Exception Safety:] In the event of an exception, the initialization state of `*this` is unchanged and its value unspecified as far as `optional` is concerned (it is up to `T`'s `operator=()`). If `*this` is initially uninitialized and `T`'s ['copy constructor] fails, `*this` is left properly uninitialized. * [*Example:] `` T x; optional def ; optional opt(x) ; T y; def = y ; assert ( *def == y ) ; opt = y ; assert ( *opt == y ) ; `` __SPACE__ [#reference_optional_operator_move_equal_value] [: `optional& optional::operator= ( T&& rhs ) ;`] * [*Effect:] Moves the value `rhs` to an `optional`. * [*Postconditions: ] `*this` is initialized and its value is moved from `rhs`. * [*Throws:] Whatever `T::operator=( T&& )` or `T::T(T &&)` throws. * [*Notes:] If `*this` was initialized, `T`'s move-assignment operator is used, otherwise, its move-constructor is used. * [*Exception Safety:] In the event of an exception, the initialization state of `*this` is unchanged and its value unspecified as far as `optional` is concerned (it is up to `T`'s `operator=()`). If `*this` is initially uninitialized and `T`'s ['move constructor] fails, `*this` is left properly uninitialized. * [*Example:] `` T x; optional def ; optional opt(x) ; T y1, y2, yR; def = std::move(y1) ; assert ( *def == yR ) ; opt = std::move(y2) ; assert ( *opt == yR ) ; `` __SPACE__ [#reference_optional_operator_equal_optional] [: `optional& optional::operator= ( optional const& rhs ) ;`] * [*Requires:] `T` is __COPY_CONSTRUCTIBLE__ and `CopyAssignable`. * [*Effects:] [table [] [[][[*`*this` contains a value]][[*`*this` does not contain a value]]] [[[*`rhs` contains a value]][assigns `*rhs` to the contained value][initializes the contained value as if direct-initializing an object of type `T` with `*rhs`]] [[[*`rhs` does not contain a value]][destroys the contained value by calling `val->T::~T()`][no effect]] ] * [*Returns:] `*this`; * [*Postconditions:] `bool(rhs) == bool(*this)`. * [*Exception Safety:] If any exception is thrown, the initialization state of `*this` and `rhs` remains unchanged. If an exception is thrown during the call to `T`'s copy constructor, no effect. If an exception is thrown during the call to `T`'s copy assignment, the state of its contained value is as defined by the exception safety guarantee of `T`'s copy assignment. * [*Example:] `` T v; optional opt(v); optional def ; opt = def ; assert ( !def ) ; // previous value (copy of 'v') destroyed from within 'opt'. `` __SPACE__ [#reference_optional_operator_move_equal_optional] [: `optional& optional::operator= ( optional&& rhs ) noexcept(`['see below]`);`] * [*Requires:] `T` is __MOVE_CONSTRUCTIBLE__ and `MoveAssignable`. * [*Effects:] [table [] [[][[*`*this` contains a value]][[*`*this` does not contain a value]]] [[[*`rhs` contains a value]][assigns `std::move(*rhs)` to the contained value][initializes the contained value as if direct-initializing an object of type `T` with `std::move(*rhs)`]] [[[*`rhs` does not contain a value]][destroys the contained value by calling `val->T::~T()`][no effect]] ] * [*Returns:] `*this`; * [*Postconditions:] `bool(rhs) == bool(*this)`. * [*Remarks:] The expression inside `noexcept` is equivalent to `is_nothrow_move_constructible::value && is_nothrow_move_assignable::value`. * [*Exception Safety:] If any exception is thrown, the initialization state of `*this` and `rhs` remains unchanged. If an exception is thrown during the call to `T`'s move constructor, the state of `*rhs` is determined by the exception safety guarantee of `T`'s move constructor. If an exception is thrown during the call to T's move-assignment, the state of `**this` and `*rhs` is determined by the exception safety guarantee of T's move assignment. * [*Example:] `` optional opt(T(2)) ; optional def ; opt = def ; assert ( def ) ; assert ( opt ) ; assert ( *opt == T(2) ) ; `` __SPACE__ [#reference_optional_operator_equal_other_optional] [: `template optional& optional::operator= ( optional const& rhs ) ;`] * [*Effect:] [table [] [[][[*`*this` contains a value]][[*`*this` does not contain a value]]] [[[*`rhs` contains a value]][assigns `*rhs` to the contained value][initializes the contained value as if direct-initializing an object of type `T` with `*rhs`]] [[[*`rhs` does not contain a value]][destroys the contained value by calling `val->T::~T()`][no effect]] ] * [*Returns:] `*this`. * [*Postconditions:] `bool(rhs) == bool(*this)`. * [*Exception Safety:] If any exception is thrown, the result of the expression `bool(*this)` remains unchanged. If an exception is thrown during the call to `T`'s constructor, no effect. If an exception is thrown during the call to `T`'s assignment, the state of its contained value is as defined by the exception safety guarantee of `T`'s copy assignment. * [*Example:] `` T v; optional opt0(v); optional opt1; opt1 = opt0 ; assert ( *opt1 == static_cast(v) ) ; `` __SPACE__ [#reference_optional_operator_move_equal_other_optional] [: `template optional& optional::operator= ( optional&& rhs ) ;`] * [*Effect:] [table [] [[][[*`*this` contains a value]][[*`*this` does not contain a value]]] [[[*`rhs` contains a value]][assigns `std::move(*rhs)` to the contained value][initializes the contained value as if direct-initializing an object of type `T` with `std::move(*rhs)`]] [[[*`rhs` does not contain a value]][destroys the contained value by calling `val->T::~T()`][no effect]] ] * [*Returns:] `*this`. * [*Postconditions:] `bool(rhs) == bool(*this)`. * [*Exception Safety:] If any exception is thrown, the result of the expression `bool(*this)` remains unchanged. If an exception is thrown during the call to `T`'s constructor, no effect. If an exception is thrown during the call to `T`'s assignment, the state of its contained value is as defined by the exception safety guarantee of `T`'s copy assignment. * [*Example:] `` T v; optional opt0(v); optional opt1; opt1 = std::move(opt0) ; assert ( opt0 ); assert ( opt1 ) assert ( *opt1 == static_cast(v) ) ; `` __SPACE__ [#reference_optional_emplace] [: `template void optional::emplace( Args&&... args );`] * [*Requires:] The compiler supports rvalue references and variadic templates. * [*Effect:] If `*this` is initialized calls `*this = none`. Then initializes in-place the contained value as if direct-initializing an object of type `T` with `std::forward(args)...`. * [*Postconditions: ] `*this` is [_initialized]. * [*Throws:] Whatever the selected `T`'s constructor throws. * [*Exception Safety:] If an exception is thrown during the initialization of `T`, `*this` is ['uninitialized]. * [*Notes:] `T` need not be __MOVE_CONSTRUCTIBLE__ or `MoveAssignable`. On compilers that do not suppor variadic templates or rvalue references, this function is available in limited functionality. For details [link optional_emplace_workaround see here]. * [*Example:] `` T v; optional opt; opt.emplace(0); // create in-place using ctor T(int) opt.emplace(); // destroy previous and default-construct another T opt.emplace(v); // destroy and copy-construct in-place (no assignment called) `` __SPACE__ [#reference_optional_operator_equal_factory] [: `template optional& optional::operator=( InPlaceFactory const& f );`] [: `template optional& optional::operator=( TypedInPlaceFactory const& f );`] * [*Effect:] Assigns an `optional` with a value of `T` obtained from the factory. * [*Postconditions: ] `*this` is [_initialized] and its value is ['directly given] from the factory `f` (i.e., the value [_is not copied]). * [*Throws:] Whatever the `T` constructor called by the factory throws. * [*Notes:] See [link boost_optional.tutorial.in_place_factories In-Place Factories] * [*Exception Safety:] Exceptions can only be thrown during the call to the `T` constructor used by the factory; in that case, the `optional` object will be reset to be ['uninitialized]. __SPACE__ [#reference_optional_reset_value] [: `void optional::reset( T const& v ) ;`] * [*Deprecated:] same as `operator= ( T const& v) ;` __SPACE__ [#reference_optional_reset] [: `void optional::reset() noexcept ;`] * [*Effects:] Same as `operator=( none_t );` __SPACE__ [#reference_optional_get] [: `T const& optional::get() const ;`] [: `T& optional::get() ;`] [: `inline T const& get ( optional const& ) ;`] [: `inline T& get ( optional &) ;`] * [*Requires:] `*this` is initialized * [*Returns:] A reference to the contained value * [*Throws:] Nothing. * [*Notes:] The requirement is asserted via `BOOST_ASSERT()`. __SPACE__ [#reference_optional_operator_asterisk] [: `T const& optional::operator*() const& ;`] [: `T& optional::operator*() &;`] * [*Requires:] `*this` is initialized * [*Returns:] A reference to the contained value * [*Throws:] Nothing. * [*Notes:] The requirement is asserted via `BOOST_ASSERT()`. On compilers that do not support ref-qualifiers on member functions these two overloads are replaced with the classical two: a `const` and non-`const` member functions. * [*Example:] `` T v ; optional opt ( v ); T const& u = *opt; assert ( u == v ) ; T w ; *opt = w ; assert ( *opt == w ) ; `` __SPACE__ [#reference_optional_operator_asterisk_move] [: `T&& optional::operator*() &&;`] * [*Requires:] `*this` contains a value. * [*Effects:] Equivalent to `return std::move(*val);`. * [*Notes:] The requirement is asserted via `BOOST_ASSERT()`. On compilers that do not support ref-qualifiers on member functions this overload is not present. __SPACE__ [#reference_optional_value] [: `T const& optional::value() const& ;`] [: `T& optional::value() & ;`] * [*Effects:] Equivalent to `return bool(*this) ? *val : throw bad_optional_access();`. * [*Notes:] On compilers that do not support ref-qualifiers on member functions these two overloads are replaced with the classical two: a `const` and non-`const` member functions. * [*Example:] `` T v ; optional o0, o1 ( v ); assert ( o1.value() == v ); try { o0.value(); // throws assert ( false ); } catch(bad_optional_access&) { assert ( true ); } `` __SPACE__ [#reference_optional_value_move] [: `T&& optional::value() && ;`] * [*Effects:] Equivalent to `return bool(*this) ? std::move(*val) : throw bad_optional_access();`. * [*Notes:] On compilers that do not support ref-qualifiers on member functions this overload is not present. __SPACE__ [#reference_optional_value_or] [: `template T optional::value_or(U && v) const& ;`] * [*Effects:] Equivalent to `if (*this) return **this; else return std::forward(v);`. * [*Remarks:] If `T` is not __COPY_CONSTRUCTIBLE__ or `U &&` is not convertible to `T`, the program is ill-formed. * [*Notes:] On compilers that do not support ref-qualifiers on member functions this overload is replaced with the `const`-qualified member function. On compilers without rvalue reference support the type of `v` becomes `U const&`. __SPACE__ [#reference_optional_value_or_move] [: `template T optional::value_or(U && v) && ;`] * [*Effects:] Equivalent to `if (*this) return std::move(**this); else return std::forward(v);`. * [*Remarks:] If `T` is not __MOVE_CONSTRUCTIBLE__ or `U &&` is not convertible to `T`, the program is ill-formed. * [*Notes:] On compilers that do not support ref-qualifiers on member functions this overload is not present. __SPACE__ [#reference_optional_value_or_call] [: `template T optional::value_or_eval(F f) const& ;`] * [*Requires:] `T` is __COPY_CONSTRUCTIBLE__ and `F` models a __SGI_GENERATOR__ whose result type is convertible to `T`. * [*Effects:] `if (*this) return **this; else return f();`. * [*Notes:] On compilers that do not support ref-qualifiers on member functions this overload is replaced with the `const`-qualified member function. * [*Example:] `` int complain_and_0() { clog << "no value returned, using default" << endl; return 0; } optional o1 = 1; optional oN = none; int i = o1.value_or_eval(complain_and_0); // fun not called assert (i == 1); int j = oN.value_or_eval(complain_and_0); // fun called assert (i == 0); `` __SPACE__ [#reference_optional_value_or_call_move] [: `template T optional::value_or_eval(F f) && ;`] * [*Requires:] `T` is __MOVE_CONSTRUCTIBLE__ and `F` models a __SGI_GENERATOR__ whose result type is convertible to `T`. * [*Effects:] `if (*this) return std::move(**this); else return f();`. * [*Notes:] On compilers that do not support ref-qualifiers on member functions this overload is not present. __SPACE__ [#reference_optional_map] [: `template auto optional::map(F f) const& -> `['see below]` ;`] [: `template auto optional::map(F f) & -> `['see below]` ;`] * [*Effects:] `if (*this) return f(**this); else return none;` * [*Notes:] The return type of these overloads is `optional`. On compilers that do not support ref-qualifiers on member functions, these two (as well as the next one) overloads are replaced with good old const and non-const overloads. * [*Example:] `` auto length = [](const string& s){ return s.size(); }; optional o1 {}, o2 {"cat"}; optional os1 = o1.map(length), os2 = o2.map(length); assert ( !os1 ) ; assert ( os2 ) ; assert ( *os2 == 3 ) ; `` __SPACE__ [#reference_optional_map_move] [: `template auto optional::map(F f) && -> `['see below]` ;`] * [*Effects:] `if (*this) return f(std::move(**this)); else return none;` * [*Notes:] The return type of this overload is `optional`. __SPACE__ [#reference_optional_flat_map] [: `template auto optional::flat_map(F f) const& -> `['see below]` ;`] [: `template auto optional::flat_map(F f) & -> `['see below]` ;`] * [*Requires:] The return type of expression `f(**this)` is `optional` for some object or reference type `U`. * [*Effects:] `if (*this) return f(**this); else return none;` * [*Notes:] The return type of these overloads is `optional`. On compilers that do not support ref-qualifiers on member functions, these two (as well as the next one) overloads are replaced with good old const and non-const overloads. * [*Example:] `` optional first_char(const string& s) { return s.empty() ? none : optional(s[0]); }; optional o1 {}, o2 {"cat"}; optional os1 = o1.flat_map(first_char), os2 = o2.flat_map(first_char); assert ( !os1 ) ; assert ( os2 ) ; assert ( *os2 == 'c' ) ; `` __SPACE__ [#reference_optional_flat_map_move] [: `template auto optional::flat_map(F f) && -> `['see below]` ;`] * [*Requires:] The return type of expression `f(std::move(**this))` is `optional` for some object or reference type `U`. * [*Effects:] `if (*this) return f(std::move(**this)); else return none;` * [*Notes:] The return type of this overload is `optional`. __SPACE__ [#reference_optional_get_value_or_value] [: `T const& optional::get_value_or( T const& default) const ;`] [: `T& optional::get_value_or( T& default ) ;`] * [*Deprecated:] Use `value_or()` instead. * [*Returns:] A reference to the contained value, if any, or `default`. * [*Throws:] Nothing. * [*Example:] `` T v, z ; optional def; T const& y = def.get_value_or(z); assert ( y == z ) ; optional opt ( v ); T const& u = opt.get_value_or(z); assert ( u == v ) ; assert ( u != z ) ; `` __SPACE__ [#reference_optional_get_ptr] [: `T const* optional::get_ptr() const ;`] [: `T* optional::get_ptr() ;`] * [*Returns:] If `*this` is initialized, a pointer to the contained value; else `0` (['null]). * [*Throws:] Nothing. * [*Notes:] The contained value is permanently stored within `*this`, so you should not hold nor delete this pointer * [*Example:] `` T v; optional opt(v); optional const copt(v); T* p = opt.get_ptr() ; T const* cp = copt.get_ptr(); assert ( p == get_pointer(opt) ); assert ( cp == get_pointer(copt) ) ; `` __SPACE__ [#reference_optional_operator_arrow] [: `T const* optional::operator ->() const ;`] [: `T* optional::operator ->() ;`] * [*Requires: ] `*this` is initialized. * [*Returns:] A pointer to the contained value. * [*Throws:] Nothing. * [*Notes:] The requirement is asserted via `BOOST_ASSERT()`. * [*Example:] `` struct X { int mdata ; } ; X x ; optional opt (x); opt->mdata = 2 ; `` __SPACE__ [#reference_optional_operator_bool] [: `explicit optional::operator bool() const noexcept ;`] [: `bool optional::has_value() const noexcept ;`] * [*Returns:] `get_ptr() != 0`. * [*Notes:] On compilers that do not support explicit conversion operators this falls back to safe-bool idiom. * [*Example:] `` optional def ; assert ( def == 0 ); optional opt ( v ) ; assert ( opt ); assert ( opt != 0 ); `` __SPACE__ [#reference_optional_operator_not] [: `bool optional::operator!() noexcept ;`] * [*Returns:] If `*this` is uninitialized, `true`; else `false`. * [*Notes:] This operator is provided for those compilers which can't use the ['unspecified-bool-type operator] in certain boolean contexts. * [*Example:] `` optional opt ; assert ( !opt ); *opt = some_T ; // Notice the "double-bang" idiom here. assert ( !!opt ) ; `` __SPACE__ [#reference_optional_is_initialized] [: `bool optional::is_initialized() const ;`] * [*Deprecated:] Same as `explicit operator bool () ;` [endsect] [section Detailed Semantics - Optional References] __SPACE__ [#reference_optional_ref_default_ctor] [: `optional::optional() noexcept;`] [: `optional::optional(none_t) noexcept;`] * [*Postconditions:] `bool(*this) == false`; `*this` refers to nothing. __SPACE__ [#reference_optional_ref_value_ctor] [: `template optional::optional(R&& r) noexcept;`] * [*Postconditions:] `bool(*this) == true`; `addressof(**this) == addressof(r)`. * [*Remarks:] Unless `R` is an lvalue reference, the program is ill-formed. This constructor does not participate in overload resolution if `decay` is an instance of `boost::optional`. * [*Notes:] This constructor is declared `explicit` on compilers that do not correctly suport binding to const lvalues of integral types. For more details [link optional_reference_binding see here]. * [*Example:] `` T v; T& vref = v ; optional opt(vref); assert ( *opt == v ) ; ++ v ; // mutate referee assert (*opt == v); `` __SPACE__ [#reference_optional_ref_cond_value_ctor] [: `template optional::optional(bool cond, R&& r) noexcept;`] * [*Effects: ] Initializes `ref` with expression `cond ? addressof(r) : nullptr`. * [*Postconditions:] `bool(*this) == cond`; If `bool(*this)`, `addressof(**this) == addressof(r)`. * [*Remarks:] Unless `R` is an lvalue reference, the program is ill-formed. This constructor does not participate in overload resolution if `decay` is an instance of `boost::optional`. __SPACE__ [#reference_optional_ref_copy_ctor] [: `optional::optional ( optional const& rhs ) noexcept ;`] * [*Effects: ] Initializes `ref` with expression `rhs.ref`. * [*Postconditions:] `bool(*this) == bool(rhs)`. * [*Example:] `` optional uninit ; assert (!uninit); optional uinit2 ( uninit ) ; assert ( uninit2 == uninit ); T v = 2 ; T& ref = v ; optional init(ref); assert ( *init == v ) ; optional init2 ( init ) ; assert ( *init2 == v ) ; v = 3 ; assert ( *init == 3 ) ; assert ( *init2 == 3 ) ; `` __SPACE__ [#reference_optional_ref_ctor_from_opt_U] [: `template explicit optional::optional ( optional const& rhs ) noexcept ;`] * [*Requires:] `is_convertible::value` is `true`. * [*Effects: ] Initializes `ref` with expression `rhs.ref`. * [*Postconditions:] `bool(*this) == bool(rhs)`. __SPACE__ [#reference_optional_ref_assign_none_t] [: `optional::operator= ( none_t ) noexcept ;`] * [*Effects: ] Assigns `ref` with expression `nullptr`. * [*returns:] `*this`. * [*Postconditions:] `bool(*this) == false`. [#reference_optional_ref_copy_assign] [: `optional& optional::operator= ( optional const& rhs ) noexcept ;`] * [*Effects: ] Assigns `ref` with expression `rhs.ref`. * [*returns:] `*this`. * [*Postconditions:] `bool(*this) == bool(rhs)`. * [*Notes:] This behaviour is called ['rebinding semantics]. See [link boost_optional.tutorial.optional_references.rebinding_semantics_for_assignment_of_optional_references here] for details. * [*Example:] `` int a = 1 ; int b = 2 ; T& ra = a ; T& rb = b ; optional def ; optional ora(ra) ; optional orb(rb) ; def = orb ; // binds 'def' to 'b' through 'rb' wrapped within 'orb' assert ( *def == b ) ; *def = ora ; // changes the value of 'b' to a copy of the value of 'a' assert ( b == a ) ; int c = 3; int& rc = c ; optional orc(rc) ; ora = orc ; // REBINDS ora to 'c' through 'rc' c = 4 ; assert ( *ora == 4 ) ; `` [#reference_optional_ref_assign_optional_U] [: `template optional& optional::operator= ( optional const& rhs ) noexcept ;`] * [*Requires:] `is_convertible::value` is `true`. * [*Effects: ] Assigns `ref` with expression `rhs.ref`. * [*returns:] `*this`. * [*Postconditions:] `bool(*this) == bool(rhs)`. __SPACE__ [#reference_optional_ref_assign_R] [: `template optional& optional::operator= ( R&& r ) noexcept ;`] * [*Effects: ] Assigns `ref` with expression `r`. * [*returns:] `*this`. * [*Postconditions:] `bool(*this) == true`. * [*Remarks:] Unless `R` is an lvalue reference, the program is ill-formed. This function does not participate in overload resolution if `decay` is an instance of `boost::optional`. * [*Example:] `` int a = 1 ; int b = 2 ; T& ra = a ; T& rb = b ; optional def ; optional opt(ra) ; def = rb ; // binds 'def' to 'b' through 'rb' assert ( *def == b ) ; *def = a ; // changes the value of 'b' to a copy of the value of 'a' assert ( b == a ) ; int c = 3; int& rc = c ; opt = rc ; // REBINDS to 'c' through 'rc' c = 4 ; assert ( *opt == 4 ) ; `` __SPACE__ [#reference_optional_ref_emplace_R] [: `void optional::emplace( R&& r ) noexcept ;`] * [*Effects: ] Assigns `ref` with expression `r`. * [*Postconditions:] `bool(*this) == true`. * [*Remarks:] Unless `R` is an lvalue reference, the program is ill-formed. This function does not participate in overload resolution if `decay` is an instance of `boost::optional`. __SPACE__ [#reference_optional_ref_get] [: `T& optional::get() const ;`] [: `T& optional::operator *() const ;`] * [*Requires:] `bool(*this) == true`. * [*Effects: ] Returns `*ref`. * [*Throws: ] Nothing. * [*Example:] `` T v ; T& vref = v ; optional opt ( vref ); T const& vref2 = *opt; assert ( vref2 == v ) ; ++ v ; assert ( *opt == v ) ; `` __SPACE__ [#reference_optional_ref_arrow] [: `T* optional::operator -> () const ;`] * [*Requires:] `bool(*this) == true`. * [*Effects: ] Returns `ref`. * [*Throws: ] Nothing. __SPACE__ [#reference_optional_ref_value] [: `T& optional::value() const ;`] * [*Effects:] Equivalent to `return bool(*this) ? *val : throw bad_optional_access();`. __SPACE__ [#reference_optional_ref_value_or] [: `template T& optional::value_or( R&& r ) const noexcept;`] * [*Effects:] Equivalent to `if (*this) return **this; else return r;`. * [*Remarks:] Unless `R` is an lvalue reference, the program is ill-formed. __SPACE__ [#reference_optional_ref_value_or_eval] [: `template T& optional::value_or( F f ) const ;`] * [*Effects:] Equivalent to `if (*this) return **this; else return f();`. * [*Remarks:] Unless `decltype(f())` is an lvalue reference, the program is ill-formed. __SPACE__ [#reference_optional_ref_map] [: `template auto optional::map( F f ) const -> `['see below]`;`] * [*Effects:] Equivalent to `if (*this) return f(**this); else return none;`. * [*Remarks:] The return type of this function is `optional`. __SPACE__ [#reference_optional_ref_flat_map] [: `template auto optional::flat_map( F f ) const -> `['see below]`;`] * [*Requires:] The return type of expression `f(**this)` is `optional` for some object or reference type `U`. * [*Effects:] Equivalent to `if (*this) return f(**this); else return none;`. * [*Remarks:] The return type of this function is `optional`. __SPACE__ [#reference_optional_ref_get_ptr] [: `T* optional::get_ptr () const noexcept;`] * [*Returns:] `ref`. __SPACE__ [#reference_optional_ref_operator_bool] [: `bool has_value() const noexcept;`] [: `optional::operator bool () const noexcept;`] * [*Returns:] `bool(ref)`. __SPACE__ [#reference_optional_ref_operator_not] [: `optional::operator ! () const noexcept;`] * [*Returns:] `!bool(ref)`. __SPACE__ [#reference_optional_ref_reset] [: `void optional::reset() noexcept;`] * [*Effects:] Same as `*this = none`. __SPACE__ [#reference_optional_ref_reset_value] [: `template void optional::reset ( R&& r) noexcept;`] * [*Effects:] Equivalent to `*this = std::forward(r)`. * [*Remarks:] This function is depprecated. __SPACE__ [#reference_optional_ref_is_initialized] [: `bool optional::is_initialized() const noexcept;`] * [*Effects:] Equivalent to `return bool(*this)`. * [*Remarks:] This function is depprecated. __SPACE__ [#reference_optional_ref_get_value_or_value] [: `template T& optional::get_value_or( R&& r ) const noexcept;`] * [*Effects:] Equivalent to `return value_or(std::forward(r);`. * [*Remarks:] This function is depprecated. [endsect] [section Detailed Semantics - Free Functions] __SPACE__ [#reference_make_optional_value] [: `optional make_optional( T const& v )`] * [*Returns: ] `optional(v)` for the ['deduced] type `T` of `v`. * [*Example:] `` template void foo ( optional const& opt ) ; foo ( make_optional(1+1) ) ; // Creates an optional `` __SPACE__ [#reference_make_optional_rvalue] [: `optional> make_optional( T && v )`] * [*Returns: ] `optional>(std::move(v))` for the ['deduced] type `T` of `v`. __SPACE__ [#reference_make_optional_bool_value] [: `optional make_optional( bool condition, T const& v )`] * [*Returns: ] `optional(condition, v)` for the ['deduced] type `T` of `v`. * [*Example:] `` optional calculate_foo() { double val = compute_foo(); return make_optional(is_not_nan_and_finite(val),val); } optional v = calculate_foo(); if ( !v ) error("foo wasn't computed"); `` __SPACE__ [#reference_make_optional_bool_rvalue] [: `optional> make_optional( bool condition, T && v )`] * [*Returns: ] `optional>(condition, std::move(v))` for the ['deduced] type `T` of `v`. __SPACE__ [#reference_operator_compare_equal_optional_optional] [: `bool operator == ( optional const& x, optional const& y );`] * [*Requires:] `T` shall meet requirements of __SGI_EQUALITY_COMPARABLE__. * [*Returns:] If both `x` and `y` are initialized, `(*x == *y)`. If only `x` or `y` is initialized, `false`. If both are uninitialized, `true`. * [*Notes:] This definition guarantees that `optional` not containing a value is compared unequal to any `optional` containing any value, and equal to any other `optional` not containing a value. Pointers have shallow relational operators while `optional` has deep relational operators. Do not use `operator==` directly in generic code which expect to be given either an `optional` or a pointer; use __FUNCTION_EQUAL_POINTEES__ instead * [*Example:] `` optional oN, oN_; optional o1(T(1)), o1_(T(1)); optional o2(T(2)); assert ( oN == oN ); // Identity implies equality assert ( o1 == o1 ); // assert ( oN == oN_ ); // Both uninitialized compare equal assert ( oN != o1 ); // Initialized unequal to initialized. assert ( o1 == o1_ ); // Both initialized compare as (*lhs == *rhs) assert ( o1 != o2 ); // `` __SPACE__ [#reference_operator_compare_less_optional_optional] [: `bool operator < ( optional const& x, optional const& y );`] * [*Requires:] Expression `*x < *y` shall be well-formed and its result shall be convertible to `bool`. * [*Returns:] `(!y) ? false : (!x) ? true : *x < *y`. * [*Notes:] This definition guarantees that `optional` not containing a value is ordered as less than any `optional` containing any value, and equivalent to any other `optional` not containing a value. Pointers have shallow relational operators while `optional` has deep relational operators. Do not use `operator<` directly in generic code which expect to be given either an `optional` or a pointer; use __FUNCTION_LESS_POINTEES__ instead. `T` need not be __SGI_LESS_THAN_COMPARABLE__. Only single `operator<` is required. Other relational operations are defined in terms of this one. If `T`'s `operator<` satisfies the axioms of __SGI_LESS_THAN_COMPARABLE__ (transitivity, antisymmetry and irreflexivity), `optinal` is __SGI_LESS_THAN_COMPARABLE__. * [*Example:] `` optional oN, oN_; optional o0(T(0)); optional o1(T(1)); assert ( !(oN < oN) ); // Identity implies equivalence assert ( !(o1 < o1) ); assert ( !(oN < oN_) ); // Two uninitialized are equivalent assert ( !(oN_ < oN) ); assert ( oN < o0 ); // Uninitialized is less than initialized assert ( !(o0 < oN) ); assert ( o1 < o2 ) ; // Two initialized compare as (*lhs < *rhs) assert ( !(o2 < o1) ) ; assert ( !(o2 < o2) ) ; `` __SPACE__ [#reference_operator_compare_not_equal_optional_optional] [: `bool operator != ( optional const& x, optional const& y );`] * [*Returns: ] `!( x == y );` __SPACE__ [#reference_operator_compare_greater_optional_optional] [: `bool operator > ( optional const& x, optional const& y );`] * [*Returns: ] `( y < x );` __SPACE__ [#reference_operator_compare_less_or_equal_optional_optional] [: `bool operator <= ( optional const& x, optional const& y );`] * [*Returns: ] `!( y < x );` __SPACE__ [#reference_operator_compare_greater_or_equal_optional_optional] [: `bool operator >= ( optional const& x, optional const& y );`] * [*Returns: ] `!( x < y );` __SPACE__ [#reference_operator_compare_equal_optional_none] [: `bool operator == ( optional const& x, none_t ) noexcept;`] [: `bool operator == ( none_t, optional const& x ) noexcept;`] * [*Returns:] `!x`. * [*Notes:] `T` need not meet requirements of __SGI_EQUALITY_COMPARABLE__. __SPACE__ [#reference_operator_compare_not_equal_optional_none] [: `bool operator != ( optional const& x, none_t ) noexcept;`] [: `bool operator != ( none_t, optional const& x ) noexcept;`] * [*Returns: ] `bool(x);` __SPACE__ [#reference_free_get_pointer] [: `auto get_pointer ( optional& o ) -> typename optional::pointer_type ;`] [: `auto get_pointer ( optional const& o ) -> typename optional::pointer_const_type ;`] * [*Returns:] `o.get_ptr()`. * [*Throws:] Nothing. __SPACE__ [#reference_free_get_value_or] [: `auto get_optional_value_or ( optional& o, typename optional::reference_type def ) -> typename optional::reference_type ;`] [: `auto get_optional_value_or ( optional const& o, typename optional::reference_const_type def ) -> typename optional::reference_const_type ;`] * [*Returns:] `o.get_value_or(def)`. * [*Throws:] Nothing. * [*Remarks:] This function is deprecated. __SPACE__ [#reference_swap_optional_optional] [: `void swap ( optional& x, optional& y ) ;`] * [*Requires:] Lvalues of type `T` shall be swappable and `T` shall be __MOVE_CONSTRUCTIBLE__. * [*Effects:] [table [] [[][[*`*this` contains a value]][[*`*this` does not contain a value]]] [[[*`rhs` contains a value]][calls `swap(*(*this), *rhs)`][initializes the contained value of `*this` as if direct-initializing an object of type `T` with the expression `std::move(*rhs)`, followed by `rhs.val->T::~T()`, `*this` contains a value and `rhs` does not contain a value]] [[[*`rhs` does not contain a value]][initializes the contained value of `rhs` as if direct-initializing an object of type `T` with the expression `std::move(*(*this))`, followed by `val->T::~T()`, `*this` does not contain a value and `rhs` contains a value][no effect]] ] * [*Postconditions:] The states of `x` and `y` interchanged. * [*Throws:] If both are initialized, whatever `swap(T&,T&)` throws. If only one is initialized, whatever `T::T ( T&& )` throws. * [*Example:] `` T x(12); T y(21); optional def0 ; optional def1 ; optional optX(x); optional optY(y); boost::swap(def0,def1); // no-op boost::swap(def0,optX); assert ( *def0 == x ); assert ( !optX ); boost::swap(def0,optX); // Get back to original values boost::swap(optX,optY); assert ( *optX == y ); assert ( *optY == x ); `` __SPACE__ [#reference_swap_optional_reference] [: `void swap ( optional& x, optional& y ) noexcept ;`] * [*Postconditions:] `x` refers to what `y` refererred to before the swap (if anything). `y` refers to whatever `x` referred to before the swap. * [*Example:] `` T x(12); T y(21); optional opt0; optional optX (x); optional optY (y); boost::swap(optX, optY); assert (addressof(*optX) == addressof(y)); assert (addressof(*optY) == addressof(x)); boost::swap(opt0, optX); assert ( opt0 ); assert ( !optX ); assert (addressof(*opt0) == addressof(y)); `` [endsect]