// Boost.Geometry // Copyright (c) 2016-2019 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP #define BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP #include #include #include namespace boost { namespace geometry { namespace formula { /*! \brief The solution of a part of the inverse problem - differential quantities. \author See - Charles F.F Karney, Algorithms for geodesics, 2011 https://arxiv.org/pdf/1109.4448.pdf */ template < typename CT, bool EnableReducedLength, bool EnableGeodesicScale, unsigned int Order = 2, bool ApproxF = true > class differential_quantities { public: static inline void apply(CT const& lon1, CT const& lat1, CT const& lon2, CT const& lat2, CT const& azimuth, CT const& reverse_azimuth, CT const& b, CT const& f, CT & reduced_length, CT & geodesic_scale) { CT const dlon = lon2 - lon1; CT const sin_lat1 = sin(lat1); CT const cos_lat1 = cos(lat1); CT const sin_lat2 = sin(lat2); CT const cos_lat2 = cos(lat2); apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2, azimuth, reverse_azimuth, b, f, reduced_length, geodesic_scale); } static inline void apply(CT const& dlon, CT const& sin_lat1, CT const& cos_lat1, CT const& sin_lat2, CT const& cos_lat2, CT const& azimuth, CT const& reverse_azimuth, CT const& b, CT const& f, CT & reduced_length, CT & geodesic_scale) { CT const c0 = 0; CT const c1 = 1; CT const one_minus_f = c1 - f; CT sin_bet1 = one_minus_f * sin_lat1; CT sin_bet2 = one_minus_f * sin_lat2; // equator if (math::equals(sin_bet1, c0) && math::equals(sin_bet2, c0)) { CT const sig_12 = dlon / one_minus_f; if (BOOST_GEOMETRY_CONDITION(EnableReducedLength)) { BOOST_GEOMETRY_ASSERT((-math::pi() <= azimuth && azimuth <= math::pi())); int azi_sign = math::sign(azimuth) >= 0 ? 1 : -1; // for antipodal CT m12 = azi_sign * sin(sig_12) * b; reduced_length = m12; } if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { CT M12 = cos(sig_12); geodesic_scale = M12; } } else { CT const c2 = 2; CT const e2 = f * (c2 - f); CT const ep2 = e2 / math::sqr(one_minus_f); CT const sin_alp1 = sin(azimuth); CT const cos_alp1 = cos(azimuth); //CT const sin_alp2 = sin(reverse_azimuth); CT const cos_alp2 = cos(reverse_azimuth); CT cos_bet1 = cos_lat1; CT cos_bet2 = cos_lat2; normalize(sin_bet1, cos_bet1); normalize(sin_bet2, cos_bet2); CT sin_sig1 = sin_bet1; CT cos_sig1 = cos_alp1 * cos_bet1; CT sin_sig2 = sin_bet2; CT cos_sig2 = cos_alp2 * cos_bet2; normalize(sin_sig1, cos_sig1); normalize(sin_sig2, cos_sig2); CT const sin_alp0 = sin_alp1 * cos_bet1; CT const cos_alp0_sqr = c1 - math::sqr(sin_alp0); CT const J12 = BOOST_GEOMETRY_CONDITION(ApproxF) ? J12_f(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, f) : J12_ep_sqr(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, ep2) ; CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_bet1)); CT const dn2 = math::sqrt(c1 + ep2 * math::sqr(sin_bet2)); if (BOOST_GEOMETRY_CONDITION(EnableReducedLength)) { CT const m12_b = dn2 * (cos_sig1 * sin_sig2) - dn1 * (sin_sig1 * cos_sig2) - cos_sig1 * cos_sig2 * J12; CT const m12 = m12_b * b; reduced_length = m12; } if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { CT const cos_sig12 = cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2; CT const t = ep2 * (cos_bet1 - cos_bet2) * (cos_bet1 + cos_bet2) / (dn1 + dn2); CT const M12 = cos_sig12 + (t * sin_sig2 - cos_sig2 * J12) * sin_sig1 / dn1; geodesic_scale = M12; } } } private: /*! Approximation of J12, expanded into taylor series in f Maxima script: ep2: f * (2-f) / ((1-f)^2); k2: ca02 * ep2; assume(f < 1); assume(sig > 0); I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig); I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig); J(sig):= I1(sig) - I2(sig); S: taylor(J(sig), f, 0, 3); S1: factor( 2*integrate(sin(s)^2,s,0,sig)*ca02*f ); S2: factor( ((integrate(-6*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig)+integrate(-2*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig))*f^2)/4 ); S3: factor( ((integrate(30*ca02^3*sin(s)^6-54*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig)+integrate(6*ca02^3*sin(s)^6-18*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig))*f^3)/12 ); */ static inline CT J12_f(CT const& sin_sig1, CT const& cos_sig1, CT const& sin_sig2, CT const& cos_sig2, CT const& cos_alp0_sqr, CT const& f) { if (Order == 0) { return 0; } CT const c2 = 2; CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2, cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1) CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2) CT const sin_2sig_12 = sin_2sig2 - sin_2sig1; CT const L1 = sig_12 - sin_2sig_12 / c2; if (Order == 1) { return cos_alp0_sqr * f * L1; } CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1) CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2) CT const sin_4sig_12 = sin_4sig2 - sin_4sig1; CT const c8 = 8; CT const c12 = 12; CT const c16 = 16; CT const c24 = 24; CT const L2 = -( cos_alp0_sqr * sin_4sig_12 + (-c8 * cos_alp0_sqr + c12) * sin_2sig_12 + (c12 * cos_alp0_sqr - c24) * sig_12) / c16; if (Order == 2) { return cos_alp0_sqr * f * (L1 + f * L2); } CT const c4 = 4; CT const c9 = 9; CT const c48 = 48; CT const c60 = 60; CT const c64 = 64; CT const c96 = 96; CT const c128 = 128; CT const c144 = 144; CT const cos_alp0_quad = math::sqr(cos_alp0_sqr); CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1; CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2; CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1; CT const A = (c9 * cos_alp0_quad - c12 * cos_alp0_sqr) * sin_4sig_12; CT const B = c4 * cos_alp0_quad * sin3_2sig_12; CT const C = (-c48 * cos_alp0_quad + c96 * cos_alp0_sqr - c64) * sin_2sig_12; CT const D = (c60 * cos_alp0_quad - c144 * cos_alp0_sqr + c128) * sig_12; CT const L3 = (A + B + C + D) / c64; // Order 3 and higher return cos_alp0_sqr * f * (L1 + f * (L2 + f * L3)); } /*! Approximation of J12, expanded into taylor series in e'^2 Maxima script: k2: ca02 * ep2; assume(sig > 0); I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig); I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig); J(sig):= I1(sig) - I2(sig); S: taylor(J(sig), ep2, 0, 3); S1: factor( integrate(sin(s)^2,s,0,sig)*ca02*ep2 ); S2: factor( (integrate(sin(s)^4,s,0,sig)*ca02^2*ep2^2)/2 ); S3: factor( (3*integrate(sin(s)^6,s,0,sig)*ca02^3*ep2^3)/8 ); */ static inline CT J12_ep_sqr(CT const& sin_sig1, CT const& cos_sig1, CT const& sin_sig2, CT const& cos_sig2, CT const& cos_alp0_sqr, CT const& ep_sqr) { if (Order == 0) { return 0; } CT const c2 = 2; CT const c4 = 4; CT const c2a0ep2 = cos_alp0_sqr * ep_sqr; CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2, cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); // sig2 - sig1 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1) CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2) CT const sin_2sig_12 = sin_2sig2 - sin_2sig1; CT const L1 = (c2 * sig_12 - sin_2sig_12) / c4; if (Order == 1) { return c2a0ep2 * L1; } CT const c8 = 8; CT const c64 = 64; CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1) CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2) CT const sin_4sig_12 = sin_4sig2 - sin_4sig1; CT const L2 = (sin_4sig_12 - c8 * sin_2sig_12 + 12 * sig_12) / c64; if (Order == 2) { return c2a0ep2 * (L1 + c2a0ep2 * L2); } CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1; CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2; CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1; CT const c9 = 9; CT const c48 = 48; CT const c60 = 60; CT const c512 = 512; CT const L3 = (c9 * sin_4sig_12 + c4 * sin3_2sig_12 - c48 * sin_2sig_12 + c60 * sig_12) / c512; // Order 3 and higher return c2a0ep2 * (L1 + c2a0ep2 * (L2 + c2a0ep2 * L3)); } static inline void normalize(CT & x, CT & y) { CT const len = math::sqrt(math::sqr(x) + math::sqr(y)); x /= len; y /= len; } }; }}} // namespace boost::geometry::formula #endif // BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP