// // Copyright 2005-2007 Adobe Systems Incorporated // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // #ifndef BOOST_GIL_CHANNEL_HPP #define BOOST_GIL_CHANNEL_HPP #include #include #include #include #include #include #include #include #ifdef BOOST_GIL_DOXYGEN_ONLY /// \def BOOST_GIL_CONFIG_HAS_UNALIGNED_ACCESS /// \brief Define to allow unaligned memory access for models of packed channel value. /// Theoretically (or historically?) on platforms which support dereferencing on /// non-word memory boundary, unaligned access may result in performance improvement. /// \warning Unfortunately, this optimization may be a C/C++ strict aliasing rules /// violation, if accessed data buffer has effective type that cannot be aliased /// without leading to undefined behaviour. #define BOOST_GIL_CONFIG_HAS_UNALIGNED_ACCESS #endif #ifdef BOOST_GIL_CONFIG_HAS_UNALIGNED_ACCESS #if defined(sun) || defined(__sun) || \ // SunOS defined(__osf__) || defined(__osf) || \ // Tru64 defined(_hpux) || defined(hpux) || \ // HP-UX defined(__arm__) || defined(__ARM_ARCH) || \ // ARM defined(_AIX) // AIX #error Unaligned access strictly disabled for some UNIX platforms or ARM architecture #elif defined(__i386__) || defined(__x86_64__) || defined(__vax__) // The check for little-endian architectures that tolerate unaligned memory // accesses is just an optimization. Nothing will break if it fails to detect // a suitable architecture. // // Unfortunately, this optimization may be a C/C++ strict aliasing rules violation // if accessed data buffer has effective type that cannot be aliased // without leading to undefined behaviour. BOOST_PRAGMA_MESSAGE("CAUTION: Unaligned access tolerated on little-endian may cause undefined behaviour") #else #error Unaligned access disabled for unknown platforms and architectures #endif #endif // defined(BOOST_GIL_CONFIG_HAS_UNALIGNED_ACCESS) namespace boost { namespace gil { /////////////////////////////////////////// //// channel_traits //// //// \ingroup ChannelModel //// \class channel_traits //// \brief defines properties of channels, such as their range and associated types //// //// The channel traits must be defined for every model of ChannelConcept //// Default traits are provided. For built-in types the default traits use //// built-in pointer and reference and the channel range is the physical //// range of the type. For classes, the default traits forward the associated types //// and range to the class. //// /////////////////////////////////////////// namespace detail { template struct channel_traits_impl; // channel traits for custom class template struct channel_traits_impl { using value_type = typename T::value_type; using reference = typename T::reference; using pointer = typename T::pointer; using const_reference = typename T::const_reference; using const_pointer = typename T::const_pointer; static constexpr bool is_mutable = T::is_mutable; static value_type min_value() { return T::min_value(); } static value_type max_value() { return T::max_value(); } }; // channel traits implementation for built-in integral or floating point channel type template struct channel_traits_impl { using value_type = T; using reference = T&; using pointer = T*; using const_reference = T const&; using const_pointer = T const*; static constexpr bool is_mutable = true; static value_type min_value() { return (std::numeric_limits::min)(); } static value_type max_value() { return (std::numeric_limits::max)(); } }; // channel traits implementation for constant built-in scalar or floating point type template struct channel_traits_impl : channel_traits_impl { using reference = T const&; using pointer = T const*; static constexpr bool is_mutable = false; }; } // namespace detail /** \ingroup ChannelModel \brief Traits for channels. Contains the following members: \code template struct channel_traits { using value_type = ...; using reference = ...; using pointer = ...; using const_reference = ...; using const_pointer = ...; static const bool is_mutable; static value_type min_value(); static value_type max_value(); }; \endcode */ template struct channel_traits : detail::channel_traits_impl::value> {}; // Channel traits for C++ reference type - remove the reference template struct channel_traits : channel_traits {}; // Channel traits for constant C++ reference type template struct channel_traits : channel_traits { using reference = typename channel_traits::const_reference; using pointer = typename channel_traits::const_pointer; static constexpr bool is_mutable = false; }; /////////////////////////////////////////// //// scoped_channel_value /////////////////////////////////////////// /// \defgroup ScopedChannelValue scoped_channel_value /// \ingroup ChannelModel /// \brief A channel adaptor that modifies the range of the source channel. Models: ChannelValueConcept /// /// Example: /// \code /// // Create a double channel with range [-0.5 .. 0.5] /// struct double_minus_half { static double apply() { return -0.5; } }; /// struct double_plus_half { static double apply() { return 0.5; } }; /// using bits64custom_t = scoped_channel_value; /// /// // channel_convert its maximum should map to the maximum /// bits64custom_t x = channel_traits::max_value(); /// assert(x == 0.5); /// uint16_t y = channel_convert(x); /// assert(y == 65535); /// \endcode /// \ingroup ScopedChannelValue /// \brief A channel adaptor that modifies the range of the source channel. Models: ChannelValueConcept /// \tparam BaseChannelValue base channel (models ChannelValueConcept) /// \tparam MinVal class with a static apply() function returning the minimum channel values /// \tparam MaxVal class with a static apply() function returning the maximum channel values template struct scoped_channel_value { using value_type = scoped_channel_value; using reference = value_type&; using pointer = value_type*; using const_reference = value_type const&; using const_pointer = value_type const*; static constexpr bool is_mutable = channel_traits::is_mutable; using base_channel_t = BaseChannelValue; static value_type min_value() { return MinVal::apply(); } static value_type max_value() { return MaxVal::apply(); } scoped_channel_value() = default; scoped_channel_value(scoped_channel_value const& other) : value_(other.value_) {} scoped_channel_value& operator=(scoped_channel_value const& other) = default; scoped_channel_value(BaseChannelValue value) : value_(value) {} scoped_channel_value& operator=(BaseChannelValue value) { value_ = value; return *this; } scoped_channel_value& operator++() { ++value_; return *this; } scoped_channel_value& operator--() { --value_; return *this; } scoped_channel_value operator++(int) { scoped_channel_value tmp=*this; this->operator++(); return tmp; } scoped_channel_value operator--(int) { scoped_channel_value tmp=*this; this->operator--(); return tmp; } template scoped_channel_value& operator+=(Scalar2 v) { value_+=v; return *this; } template scoped_channel_value& operator-=(Scalar2 v) { value_-=v; return *this; } template scoped_channel_value& operator*=(Scalar2 v) { value_*=v; return *this; } template scoped_channel_value& operator/=(Scalar2 v) { value_/=v; return *this; } operator BaseChannelValue() const { return value_; } private: BaseChannelValue value_{}; }; template struct float_point_zero { static constexpr T apply() { return 0.0f; } }; template struct float_point_one { static constexpr T apply() { return 1.0f; } }; /////////////////////////////////////////// //// Support for sub-byte channels. These are integral channels whose value is contained in a range of bits inside an integral type /////////////////////////////////////////// // It is necessary for packed channels to have their own value type. They cannot simply use an integral large enough to store the data. Here is why: // - Any operation that requires returning the result by value will otherwise return the built-in integral type, which will have incorrect range // That means that after getting the value of the channel we cannot properly do channel_convert, channel_invert, etc. // - Two channels are declared compatible if they have the same value type. That means that a packed channel is incorrectly declared compatible with an integral type namespace detail { // returns the smallest fast unsigned integral type that has at least NumBits bits template struct min_fast_uint : std::conditional < NumBits <= 8, std::uint_least8_t, typename std::conditional < NumBits <= 16, std::uint_least16_t, typename std::conditional < NumBits <= 32, std::uint_least32_t, std::uintmax_t >::type >::type > {}; template struct num_value_fn : std::conditional {}; template struct max_value_fn : std::conditional {}; } // namespace detail /// \defgroup PackedChannelValueModel packed_channel_value /// \ingroup ChannelModel /// \brief Represents the value of an unsigned integral channel operating over a bit range. Models: ChannelValueConcept /// Example: /// \code /// // A 4-bit unsigned integral channel. /// using bits4 = packed_channel_value<4>; /// /// assert(channel_traits::min_value()==0); /// assert(channel_traits::max_value()==15); /// assert(sizeof(bits4)==1); /// static_assert(gil::is_channel_integral::value, ""); /// \endcode /// \ingroup PackedChannelValueModel /// \brief The value of a subbyte channel. Models: ChannelValueConcept template class packed_channel_value { public: using integer_t = typename detail::min_fast_uint::type; using value_type = packed_channel_value; using reference = value_type&; using const_reference = value_type const&; using pointer = value_type*; using const_pointer = value_type const*; static constexpr bool is_mutable = true; static value_type min_value() { return 0; } static value_type max_value() { return low_bits_mask_t< NumBits >::sig_bits; } packed_channel_value() = default; packed_channel_value(integer_t v) { value_ = static_cast(v & low_bits_mask_t::sig_bits_fast); } template packed_channel_value(Scalar v) { value_ = packed_channel_value(static_cast(v)); } static unsigned int num_bits() { return NumBits; } operator integer_t() const { return value_; } private: integer_t value_{}; }; namespace detail { template struct static_copy_bytes { void operator()(unsigned char const* from, unsigned char* to) const { *to = *from; static_copy_bytes()(++from, ++to); } }; template <> struct static_copy_bytes<0> { void operator()(unsigned char const*, unsigned char*) const {} }; template class packed_channel_reference_base { protected: using data_ptr_t = typename std::conditional::type; public: data_ptr_t _data_ptr; // void* pointer to the first byte of the bit range using value_type = packed_channel_value; using reference = const Derived; using pointer = value_type *; using const_pointer = const value_type *; static constexpr int num_bits = NumBits; static constexpr bool is_mutable = IsMutable; static value_type min_value() { return channel_traits::min_value(); } static value_type max_value() { return channel_traits::max_value(); } using bitfield_t = BitField; using integer_t = typename value_type::integer_t; packed_channel_reference_base(data_ptr_t data_ptr) : _data_ptr(data_ptr) {} packed_channel_reference_base(const packed_channel_reference_base& ref) : _data_ptr(ref._data_ptr) {} const Derived& operator=(integer_t v) const { set(v); return derived(); } const Derived& operator++() const { set(get()+1); return derived(); } const Derived& operator--() const { set(get()-1); return derived(); } Derived operator++(int) const { Derived tmp=derived(); this->operator++(); return tmp; } Derived operator--(int) const { Derived tmp=derived(); this->operator--(); return tmp; } template const Derived& operator+=(Scalar2 v) const { set( static_cast( get() + v )); return derived(); } template const Derived& operator-=(Scalar2 v) const { set( static_cast( get() - v )); return derived(); } template const Derived& operator*=(Scalar2 v) const { set( static_cast( get() * v )); return derived(); } template const Derived& operator/=(Scalar2 v) const { set( static_cast( get() / v )); return derived(); } operator integer_t() const { return get(); } data_ptr_t operator &() const {return _data_ptr;} protected: using num_value_t = typename detail::num_value_fn::type; using max_value_t = typename detail::max_value_fn::type; static const num_value_t num_values = static_cast< num_value_t >( 1 ) << NumBits ; static const max_value_t max_val = static_cast< max_value_t >( num_values - 1 ); #if defined(BOOST_GIL_CONFIG_HAS_UNALIGNED_ACCESS) const bitfield_t& get_data() const { return *static_cast(_data_ptr); } void set_data(const bitfield_t& val) const { *static_cast< bitfield_t*>(_data_ptr) = val; } #else bitfield_t get_data() const { bitfield_t ret; static_copy_bytes()(gil_reinterpret_cast_c(_data_ptr),gil_reinterpret_cast(&ret)); return ret; } void set_data(const bitfield_t& val) const { static_copy_bytes()(gil_reinterpret_cast_c(&val),gil_reinterpret_cast(_data_ptr)); } #endif private: void set(integer_t value) const { // can this be done faster?? this->derived().set_unsafe(((value % num_values) + num_values) % num_values); } integer_t get() const { return derived().get(); } const Derived& derived() const { return static_cast(*this); } }; } // namespace detail /// \defgroup PackedChannelReferenceModel packed_channel_reference /// \ingroup ChannelModel /// \brief Represents a reference proxy to a channel operating over a bit range whose offset is fixed at compile time. Models ChannelConcept /// Example: /// \code /// // Reference to a 2-bit channel starting at bit 1 (i.e. the second bit) /// using bits2_1_ref_t = packed_channel_reference const; /// /// uint16_t data=0; /// bits2_1_ref_t channel_ref(&data); /// channel_ref = channel_traits::max_value(); // == 3 /// assert(data == 6); // == 3<<1 == 6 /// \endcode /// \tparam BitField A type that holds the bits of the pixel from which the channel is referenced. Typically an integral type, like std::uint16_t /// \tparam Defines the sequence of bits in the data value that contain the channel /// \tparam true if the reference is mutable template class packed_channel_reference; /// \tparam A type that holds the bits of the pixel from which the channel is referenced. Typically an integral type, like std::uint16_t /// \tparam Defines the sequence of bits in the data value that contain the channel /// \tparam true if the reference is mutable template class packed_dynamic_channel_reference; /// \ingroup PackedChannelReferenceModel /// \brief A constant subbyte channel reference whose bit offset is fixed at compile time. Models ChannelConcept template class packed_channel_reference : public detail::packed_channel_reference_base < packed_channel_reference, BitField, NumBits, false > { using parent_t = detail::packed_channel_reference_base < packed_channel_reference, BitField, NumBits, false >; friend class packed_channel_reference; static const BitField channel_mask = static_cast(parent_t::max_val) << FirstBit; void operator=(packed_channel_reference const&); public: using const_reference = packed_channel_reference const; using mutable_reference = packed_channel_reference const; using integer_t = typename parent_t::integer_t; explicit packed_channel_reference(const void* data_ptr) : parent_t(data_ptr) {} packed_channel_reference(const packed_channel_reference& ref) : parent_t(ref._data_ptr) {} packed_channel_reference(const mutable_reference& ref) : parent_t(ref._data_ptr) {} unsigned first_bit() const { return FirstBit; } integer_t get() const { return integer_t((this->get_data()&channel_mask) >> FirstBit); } }; /// \ingroup PackedChannelReferenceModel /// \brief A mutable subbyte channel reference whose bit offset is fixed at compile time. Models ChannelConcept template class packed_channel_reference : public detail::packed_channel_reference_base,BitField,NumBits,true> { using parent_t = detail::packed_channel_reference_base,BitField,NumBits,true>; friend class packed_channel_reference; static const BitField channel_mask = static_cast< BitField >( parent_t::max_val ) << FirstBit; public: using const_reference = packed_channel_reference const; using mutable_reference = packed_channel_reference const; using integer_t = typename parent_t::integer_t; explicit packed_channel_reference(void* data_ptr) : parent_t(data_ptr) {} packed_channel_reference(const packed_channel_reference& ref) : parent_t(ref._data_ptr) {} packed_channel_reference const& operator=(integer_t value) const { BOOST_ASSERT(value <= parent_t::max_val); set_unsafe(value); return *this; } const packed_channel_reference& operator=(const mutable_reference& ref) const { set_from_reference(ref.get_data()); return *this; } const packed_channel_reference& operator=(const const_reference& ref) const { set_from_reference(ref.get_data()); return *this; } template const packed_channel_reference& operator=(const packed_dynamic_channel_reference& ref) const { set_unsafe(ref.get()); return *this; } unsigned first_bit() const { return FirstBit; } integer_t get() const { return integer_t((this->get_data()&channel_mask) >> FirstBit); } void set_unsafe(integer_t value) const { this->set_data((this->get_data() & ~channel_mask) | (( static_cast< BitField >( value )<set_data((this->get_data() & ~channel_mask) | (other_bits & channel_mask)); } }; }} // namespace boost::gil namespace std { // We are forced to define swap inside std namespace because on some platforms (Visual Studio 8) STL calls swap qualified. // swap with 'left bias': // - swap between proxy and anything // - swap between value type and proxy // - swap between proxy and proxy /// \ingroup PackedChannelReferenceModel /// \brief swap for packed_channel_reference template inline void swap(boost::gil::packed_channel_reference const x, R& y) { boost::gil::swap_proxy < typename boost::gil::packed_channel_reference::value_type >(x, y); } /// \ingroup PackedChannelReferenceModel /// \brief swap for packed_channel_reference template inline void swap( typename boost::gil::packed_channel_reference::value_type& x, boost::gil::packed_channel_reference const y) { boost::gil::swap_proxy < typename boost::gil::packed_channel_reference::value_type >(x,y); } /// \ingroup PackedChannelReferenceModel /// \brief swap for packed_channel_reference template inline void swap( boost::gil::packed_channel_reference const x, boost::gil::packed_channel_reference const y) { boost::gil::swap_proxy < typename boost::gil::packed_channel_reference::value_type >(x,y); } } // namespace std namespace boost { namespace gil { /// \defgroup PackedChannelDynamicReferenceModel packed_dynamic_channel_reference /// \ingroup ChannelModel /// \brief Represents a reference proxy to a channel operating over a bit range whose offset is specified at run time. Models ChannelConcept /// /// Example: /// \code /// // Reference to a 2-bit channel whose offset is specified at construction time /// using bits2_dynamic_ref_t = packed_dynamic_channel_reference const; /// /// uint16_t data=0; /// bits2_dynamic_ref_t channel_ref(&data,1); /// channel_ref = channel_traits::max_value(); // == 3 /// assert(data == 6); // == (3<<1) == 6 /// \endcode /// \brief Models a constant subbyte channel reference whose bit offset is a runtime parameter. Models ChannelConcept /// Same as packed_channel_reference, except that the offset is a runtime parameter /// \ingroup PackedChannelDynamicReferenceModel template class packed_dynamic_channel_reference : public detail::packed_channel_reference_base,BitField,NumBits,false> { using parent_t = detail::packed_channel_reference_base,BitField,NumBits,false>; friend class packed_dynamic_channel_reference; unsigned _first_bit; // 0..7 void operator=(const packed_dynamic_channel_reference&); public: using const_reference = packed_dynamic_channel_reference const; using mutable_reference = packed_dynamic_channel_reference const; using integer_t = typename parent_t::integer_t; packed_dynamic_channel_reference(const void* data_ptr, unsigned first_bit) : parent_t(data_ptr), _first_bit(first_bit) {} packed_dynamic_channel_reference(const const_reference& ref) : parent_t(ref._data_ptr), _first_bit(ref._first_bit) {} packed_dynamic_channel_reference(const mutable_reference& ref) : parent_t(ref._data_ptr), _first_bit(ref._first_bit) {} unsigned first_bit() const { return _first_bit; } integer_t get() const { const BitField channel_mask = static_cast< integer_t >( parent_t::max_val ) <<_first_bit; return static_cast< integer_t >(( this->get_data()&channel_mask ) >> _first_bit ); } }; /// \brief Models a mutable subbyte channel reference whose bit offset is a runtime parameter. Models ChannelConcept /// Same as packed_channel_reference, except that the offset is a runtime parameter /// \ingroup PackedChannelDynamicReferenceModel template class packed_dynamic_channel_reference : public detail::packed_channel_reference_base,BitField,NumBits,true> { using parent_t = detail::packed_channel_reference_base,BitField,NumBits,true>; friend class packed_dynamic_channel_reference; unsigned _first_bit; public: using const_reference = packed_dynamic_channel_reference const; using mutable_reference = packed_dynamic_channel_reference const; using integer_t = typename parent_t::integer_t; packed_dynamic_channel_reference(void* data_ptr, unsigned first_bit) : parent_t(data_ptr), _first_bit(first_bit) {} packed_dynamic_channel_reference(const packed_dynamic_channel_reference& ref) : parent_t(ref._data_ptr), _first_bit(ref._first_bit) {} packed_dynamic_channel_reference const& operator=(integer_t value) const { BOOST_ASSERT(value <= parent_t::max_val); set_unsafe(value); return *this; } const packed_dynamic_channel_reference& operator=(const mutable_reference& ref) const { set_unsafe(ref.get()); return *this; } const packed_dynamic_channel_reference& operator=(const const_reference& ref) const { set_unsafe(ref.get()); return *this; } template const packed_dynamic_channel_reference& operator=(const packed_channel_reference& ref) const { set_unsafe(ref.get()); return *this; } unsigned first_bit() const { return _first_bit; } integer_t get() const { const BitField channel_mask = static_cast< integer_t >( parent_t::max_val ) << _first_bit; return static_cast< integer_t >(( this->get_data()&channel_mask ) >> _first_bit ); } void set_unsafe(integer_t value) const { const BitField channel_mask = static_cast< integer_t >( parent_t::max_val ) << _first_bit; this->set_data((this->get_data() & ~channel_mask) | value<<_first_bit); } }; } } // namespace boost::gil namespace std { // We are forced to define swap inside std namespace because on some platforms (Visual Studio 8) STL calls swap qualified. // swap with 'left bias': // - swap between proxy and anything // - swap between value type and proxy // - swap between proxy and proxy /// \ingroup PackedChannelDynamicReferenceModel /// \brief swap for packed_dynamic_channel_reference template inline void swap(const boost::gil::packed_dynamic_channel_reference x, R& y) { boost::gil::swap_proxy::value_type>(x,y); } /// \ingroup PackedChannelDynamicReferenceModel /// \brief swap for packed_dynamic_channel_reference template inline void swap(typename boost::gil::packed_dynamic_channel_reference::value_type& x, const boost::gil::packed_dynamic_channel_reference y) { boost::gil::swap_proxy::value_type>(x,y); } /// \ingroup PackedChannelDynamicReferenceModel /// \brief swap for packed_dynamic_channel_reference template inline void swap(const boost::gil::packed_dynamic_channel_reference x, const boost::gil::packed_dynamic_channel_reference y) { boost::gil::swap_proxy::value_type>(x,y); } } // namespace std // \brief Determines the fundamental type which may be used, e.g., to cast from larger to smaller channel types. namespace boost { namespace gil { template struct base_channel_type_impl { using type = T; }; template struct base_channel_type_impl > { using type = typename packed_channel_value::integer_t; }; template struct base_channel_type_impl > { using type = typename packed_channel_reference::integer_t; }; template struct base_channel_type_impl > { using type = typename packed_dynamic_channel_reference::integer_t; }; template struct base_channel_type_impl > { using type = ChannelValue; }; template struct base_channel_type : base_channel_type_impl::type> {}; }} //namespace boost::gil #endif