// Copyright 2015-2019 Hans Dembinski // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HISTOGRAM_AXIS_VARIANT_HPP #define BOOST_HISTOGRAM_AXIS_VARIANT_HPP #include #include #include #include #include #include #include #include #include // mp_contains #include // mp_first #include #include #include #include #include namespace boost { namespace histogram { namespace axis { /// Polymorphic axis type template class variant : public iterator_mixin> { using impl_type = boost::variant2::variant; template using is_bounded_type = mp11::mp_contains>; template using requires_bounded_type = std::enable_if_t::value>; // maybe metadata_type or const metadata_type, if bounded type is const using metadata_type = std::remove_reference_t>>()))>; public: // cannot import ctors with using directive, it breaks gcc and msvc variant() = default; variant(const variant&) = default; variant& operator=(const variant&) = default; variant(variant&&) = default; variant& operator=(variant&&) = default; template > variant(T&& t) : impl(std::forward(t)) {} template > variant& operator=(T&& t) { impl = std::forward(t); return *this; } template variant(const variant& u) { this->operator=(u); } template variant& operator=(const variant& u) { visit( [this](const auto& u) { using U = std::decay_t; detail::static_if>( [this](const auto& u) { this->operator=(u); }, [](const auto&) { BOOST_THROW_EXCEPTION(std::runtime_error( detail::type_name() + " is not convertible to a bounded type of " + detail::type_name())); }, u); }, u); return *this; } /// Return size of axis. index_type size() const { return visit([](const auto& a) { return a.size(); }, *this); } /// Return options of axis or option::none_t if axis has no options. unsigned options() const { return visit([](const auto& a) { return axis::traits::options(a); }, *this); } /// Returns true if the axis is inclusive or false. bool inclusive() const { return visit([](const auto& a) { return axis::traits::inclusive(a); }, *this); } /// Return reference to const metadata or instance of null_type if axis has no /// metadata. const metadata_type& metadata() const { return visit( [](const auto& a) -> const metadata_type& { using M = decltype(traits::metadata(a)); return detail::static_if>( [](const auto& a) -> const metadata_type& { return traits::metadata(a); }, [](const auto&) -> const metadata_type& { BOOST_THROW_EXCEPTION(std::runtime_error( "cannot return metadata of type " + detail::type_name() + " through axis::variant interface which uses type " + detail::type_name() + "; use boost::histogram::axis::get to obtain a reference " "of this axis type")); }, a); }, *this); } /// Return reference to metadata or instance of null_type if axis has no /// metadata. metadata_type& metadata() { return visit( [](auto& a) -> metadata_type& { using M = decltype(traits::metadata(a)); return detail::static_if>( [](auto& a) -> metadata_type& { return traits::metadata(a); }, [](auto&) -> metadata_type& { BOOST_THROW_EXCEPTION(std::runtime_error( "cannot return metadata of type " + detail::type_name() + " through axis::variant interface which uses type " + detail::type_name() + "; use boost::histogram::axis::get to obtain a reference " "of this axis type")); }, a); }, *this); } /** Return index for value argument. Throws std::invalid_argument if axis has incompatible call signature. */ template index_type index(const U& u) const { return visit([&u](const auto& a) { return traits::index(a, u); }, *this); } /** Return value for index argument. Only works for axes with value method that returns something convertible to double and will throw a runtime_error otherwise, see axis::traits::value(). */ double value(real_index_type idx) const { return visit([idx](const auto& a) { return traits::value_as(a, idx); }, *this); } /** Return bin for index argument. Only works for axes with value method that returns something convertible to double and will throw a runtime_error otherwise, see axis::traits::value(). */ auto bin(index_type idx) const { return visit( [idx](const auto& a) { return detail::value_method_switch( [idx](const auto& a) { // axis is discrete const double x = traits::value_as(a, idx); return polymorphic_bin(x, x); }, [idx](const auto& a) { // axis is continuous const double x1 = traits::value_as(a, idx); const double x2 = traits::value_as(a, idx + 1); return polymorphic_bin(x1, x2); }, a); }, *this); } /** Compare two variants. Return true if the variants point to the same concrete axis type and the types compare equal. Otherwise return false. */ template bool operator==(const variant& u) const { return visit([&u](const auto& x) { return u == x; }, *this); } /** Compare variant with a concrete axis type. Return true if the variant point to the same concrete axis type and the types compare equal. Otherwise return false. */ template bool operator==(const T& t) const { return detail::static_if_c<(mp11::mp_contains::value || mp11::mp_contains::value || mp11::mp_contains::value)>( [&](const auto& t) { using U = std::decay_t; const U* tp = detail::variant_access::template get_if(this); return tp && detail::relaxed_equal(*tp, t); }, [&](const auto&) { return false; }, t); } /// The negation of operator==. template bool operator!=(const T& t) const { return !operator==(t); } template void serialize(Archive& ar, unsigned /* version */) { detail::variant_proxy p{*this}; ar& make_nvp("variant", p); } private: impl_type impl; friend struct detail::variant_access; friend struct boost::histogram::unsafe_access; }; // specialization for empty argument list, useful for meta-programming template <> class variant<> {}; /// Apply visitor to variant (reference). template decltype(auto) visit(Visitor&& vis, variant& var) { return detail::variant_access::visit(vis, var); } /// Apply visitor to variant (movable reference). template decltype(auto) visit(Visitor&& vis, variant&& var) { return detail::variant_access::visit(vis, std::move(var)); } /// Apply visitor to variant (const reference). template decltype(auto) visit(Visitor&& vis, const variant& var) { return detail::variant_access::visit(vis, var); } /// Returns pointer to T in variant or null pointer if type does not match. template auto get_if(variant* v) { return detail::variant_access::template get_if(v); } /// Returns pointer to const T in variant or null pointer if type does not match. template auto get_if(const variant* v) { return detail::variant_access::template get_if(v); } /// Return reference to T, throws std::runtime_error if type does not match. template decltype(auto) get(variant& v) { auto tp = get_if(&v); if (!tp) BOOST_THROW_EXCEPTION(std::runtime_error("T is not the held type")); return *tp; } /// Return movable reference to T, throws unspecified exception if type does not match. template decltype(auto) get(variant&& v) { auto tp = get_if(&v); if (!tp) BOOST_THROW_EXCEPTION(std::runtime_error("T is not the held type")); return std::move(*tp); } /// Return const reference to T, throws unspecified exception if type does not match. template decltype(auto) get(const variant& v) { auto tp = get_if(&v); if (!tp) BOOST_THROW_EXCEPTION(std::runtime_error("T is not the held type")); return *tp; } // pass-through version of visit for generic programming template decltype(auto) visit(Visitor&& vis, T&& var) { return std::forward(vis)(std::forward(var)); } // pass-through version of get for generic programming template decltype(auto) get(U&& u) { return std::forward(u); } // pass-through version of get_if for generic programming template auto get_if(U* u) { return reinterpret_cast(std::is_same>::value ? u : nullptr); } // pass-through version of get_if for generic programming template auto get_if(const U* u) { return reinterpret_cast(std::is_same>::value ? u : nullptr); } } // namespace axis } // namespace histogram } // namespace boost #endif