// Copyright Christopher Kormanyos 2013. // Copyright Paul A. Bristow 2013. // Copyright John Maddock 2013. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or // copy at http://www.boost.org/LICENSE_1_0.txt). #ifdef _MSC_VER # pragma warning (disable : 4512) // assignment operator could not be generated. # pragma warning (disable : 4996) // assignment operator could not be generated. #endif #include #include #include #include #include #include // Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/BesselFunctionZeros.html // Test values can be calculated using [@wolframalpha.com WolframAplha] // See also http://dlmf.nist.gov/10.21 //[bessel_zero_example_1 /*`This example demonstrates calculating zeros of the Bessel, Neumann and Airy functions. It also shows how Boost.Math and Boost.Multiprecision can be combined to provide a many decimal digit precision. For 50 decimal digit precision we need to include */ #include /*`and a `typedef` for `float_type` may be convenient (allowing a quick switch to re-compute at built-in `double` or other precision) */ typedef boost::multiprecision::cpp_dec_float_50 float_type; //`To use the functions for finding zeros of the functions we need #include //`This file includes the forward declaration signatures for the zero-finding functions: // #include /*`but more details are in the full documentation, for example at [@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions] */ /*`This example shows obtaining both a single zero of the Bessel function, and then placing multiple zeros into a container like `std::vector` by providing an iterator. The signature of the single value function is: template inline typename detail::bessel_traits >::result_type cyl_bessel_j_zero(T v, // Floating-point value for Jv. int m); // start index. The result type is controlled by the floating-point type of parameter `v` (but subject to the usual __precision_policy and __promotion_policy). The signature of multiple zeros function is: template inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv. int start_index, // 1-based start index. unsigned number_of_zeros, OutputIterator out_it); // iterator into container for zeros. There is also a version which allows control of the __policy_section for error handling and precision. template inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv. int start_index, // 1-based start index. unsigned number_of_zeros, OutputIterator out_it, const Policy& pol); // iterator into container for zeros. */ //] [/bessel_zero_example_1] //[bessel_zero_example_iterator_1] /*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it` to create a sum of 1/zeros[super 2] by defining a custom output iterator: */ template struct output_summation_iterator { output_summation_iterator(T* p) : p_sum(p) {} output_summation_iterator& operator*() { return *this; } output_summation_iterator& operator++() { return *this; } output_summation_iterator& operator++(int) { return *this; } output_summation_iterator& operator = (T const& val) { *p_sum += 1./ (val * val); // Summing 1/zero^2. return *this; } private: T* p_sum; }; //] [/bessel_zero_example_iterator_1] int main() { try { //[bessel_zero_example_2] /*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks; this will ensure that helpful error messages can be shown when exceptional conditions arise.] First, evaluate a single Bessel zero. The precision is controlled by the float-point type of template parameter `T` of `v` so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double). */ double root = boost::math::cyl_bessel_j_zero(0.0, 1); // Displaying with default precision of 6 decimal digits: std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483 // And with all the guaranteed (15) digits: std::cout.precision(std::numeric_limits::digits10); std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577 /*`But note that because the parameter `v` controls the precision of the result, `v` [*must be a floating-point type]. So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus: `` root = boost::math::cyl_bessel_j_zero(0, 1); `` with this error message `` error C2338: Order must be a floating-point type. `` Optionally, we can use a policy to ignore errors, C-style, returning some value perhaps infinity or NaN, or the best that can be done. (See __user_error_handling). To create a (possibly unwise!) policy that ignores all errors: */ typedef boost::math::policies::policy < boost::math::policies::domain_error, boost::math::policies::overflow_error, boost::math::policies::underflow_error, boost::math::policies::denorm_error, boost::math::policies::pole_error, boost::math::policies::evaluation_error > ignore_all_policy; double inf = std::numeric_limits::infinity(); double nan = std::numeric_limits::quiet_NaN(); std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 0) " << std::endl; double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 0, ignore_all_policy()); std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy()); std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy()); std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN /*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call, placing the results in a container, often `std::vector`. For example, generate five `double` roots of J[sub v] for integral order 2. showing the same results as column J[sub 2](x) in table 1 of [@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros]. */ unsigned int n_roots = 5U; std::vector roots; boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots)); std::copy(roots.begin(), roots.end(), std::ostream_iterator(std::cout, "\n")); /*`Or generate 50 decimal digit roots of J[sub v] for non-integral order `v = 71/19`. We set the precision of the output stream and show trailing zeros to display a fixed 50 decimal digits. */ std::cout.precision(std::numeric_limits::digits10); // 50 decimal digits. std::cout << std::showpoint << std::endl; // Show trailing zeros. float_type x = float_type(71) / 19; float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root. std::cout << "x = " << x << ", r = " << r << std::endl; r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root. std::cout << "x = " << x << ", r = " << r << std::endl; std::vector zeros; boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros)); std::cout << "cyl_bessel_j_zeros" << std::endl; // Print the roots to the output stream. std::copy(zeros.begin(), zeros.end(), std::ostream_iterator(std::cout, "\n")); /*`The Neumann function zeros are evaluated very similarly: */ using boost::math::cyl_neumann_zero; double zn = cyl_neumann_zero(2., 1); std::cout << "cyl_neumann_zero(2., 1) = " << std::endl; //double zn0 = zn; // std::cout << "zn0 = " << std::endl; // std::cout << zn0 << std::endl; // std::cout << zn << std::endl; // std::cout << cyl_neumann_zero(2., 1) << std::endl; std::vector nzeros(3); // Space for 3 zeros. cyl_neumann_zero(2.F, 1, nzeros.size(), nzeros.begin()); std::cout << "cyl_neumann_zero(2.F, 1, " << std::endl; // Print the zeros to the output stream. std::copy(nzeros.begin(), nzeros.end(), std::ostream_iterator(std::cout, "\n")); std::cout << cyl_neumann_zero(static_cast(220)/100, 1) << std::endl; // 3.6154383428745996706772556069431792744372398748422 /*`Finally we show how the output iterator can be used to compute a sum of zeros. (See [@https://doi.org/10.1017/S2040618500034067 Ian N. Sneddon, Infinite Sums of Bessel Zeros], page 150 equation 40). */ //] [/bessel_zero_example_2] { //[bessel_zero_example_iterator_2] /*`The sum is calculated for many values, converging on the analytical exact value of `1/8`. */ using boost::math::cyl_bessel_j_zero; double nu = 1.; double sum = 0; output_summation_iterator it(&sum); // sum of 1/zeros^2 cyl_bessel_j_zero(nu, 1, 10000, it); double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution. std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum << ", exact = " << s << std::endl; // nu = 1.00000, sum = 0.124990, exact = 0.125000 //] [/bessel_zero_example_iterator_2] } } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } //[bessel_zero_example_iterator_3] /*`Examples below show effect of 'bad' arguments that throw a `domain_error` exception. */ try { // Try a negative rank m. std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << std::endl; float dodgy_root = boost::math::cyl_bessel_j_zero(-1.F, -1); std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << dodgy_root << std::endl; // Throw exception Error in function boost::math::cyl_bessel_j_zero(double, int): // Order argument is -1, but must be >= 0 ! } catch (std::exception& ex) { std::cout << "Throw exception " << ex.what() << std::endl; } /*`[note The type shown is the type [*after promotion], using __precision_policy and __promotion_policy, from `float` to `double` in this case.] In this example the promotion goes: # Arguments are `float` and `int`. # Treat `int` "as if" it were a `double`, so arguments are `float` and `double`. # Common type is `double` - so that's the precision we want (and the type that will be returned). # Evaluate internally as `long double` for full `double` precision. See full code for other examples that promote from `double` to `long double`. */ //] [/bessel_zero_example_iterator_3] try { // order v = inf std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << std::endl; float infF = std::numeric_limits::infinity(); float inf_root = boost::math::cyl_bessel_j_zero(infF, 1); std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << inf_root << std::endl; // boost::math::cyl_bessel_j_zero(-1.F, -1) //Thrown exception Error in function boost::math::cyl_bessel_j_zero(double, int): // Requested the -1'th zero, but the rank must be positive ! } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } try { // order v = inf double inf = std::numeric_limits::infinity(); double inf_root = boost::math::cyl_bessel_j_zero(inf, 1); std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, unsigned): // Order argument is 1.#INF, but must be finite >= 0 ! } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } try { // order v = NaN double nan = std::numeric_limits::quiet_NaN(); double nan_root = boost::math::cyl_bessel_j_zero(nan, 1); std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, unsigned): // Order argument is 1.#QNAN, but must be finite >= 0 ! } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } try { // Try a negative m. double dodgy_root = boost::math::cyl_bessel_j_zero(0.0, -1); // warning C4146: unary minus operator applied to unsigned type, result still unsigned. std::cout << "boost::math::cyl_bessel_j_zero(0.0, -1) " << dodgy_root << std::endl; // boost::math::cyl_bessel_j_zero(0.0, -1) 6.74652e+009 // This *should* fail because m is unreasonably large. } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } try { // m = inf double inf = std::numeric_limits::infinity(); double inf_root = boost::math::cyl_bessel_j_zero(0.0, inf); // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data. std::cout << "boost::math::cyl_bessel_j_zero(0.0, inf) " << inf_root << std::endl; // Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): // Requested the 0'th zero, but must be > 0 ! } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } try { // m = NaN std::cout << "boost::math::cyl_bessel_j_zero(0.0, nan) " << std::endl ; double nan = std::numeric_limits::quiet_NaN(); double nan_root = boost::math::cyl_bessel_j_zero(0.0, nan); // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data. std::cout << nan_root << std::endl; // Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): // Requested the 0'th zero, but must be > 0 ! } catch (std::exception& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } } // int main() /* Mathematica: Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}] 7.2731751938316489503185694262290765588963196701623 10.724858308883141732536172745851416647110749599085 14.018504599452388106120459558042660282427471931581 17.25249845917041718216248716654977734919590383861 20.456678874044517595180234083894285885460502077814 23.64363089714234522494551422714731959985405172504 26.819671140255087745421311470965019261522390519297 29.988343117423674742679141796661432043878868194142 33.151796897690520871250862469973445265444791966114 36.3114160002162074157243540350393860813165201842 39.468132467505236587945197808083337887765967032029 42.622597801391236474855034831297954018844433480227 45.775281464536847753390206207806726581495950012439 48.926530489173566198367766817478553992471739894799 52.076607045343002794279746041878924876873478063472 55.225712944912571393594224327817265689059002890192 58.374006101538886436775188150439025201735151418932 61.521611873000965273726742659353136266390944103571 64.66863105379093036834648221487366079456596628716 67.815145619696290925556791375555951165111460585458 Mathematica: Table[N[BesselKZero[2, n], 50], {n, 1, 5, 1}] n | 1 | 3.3842417671495934727014260185379031127323883259329 2 | 6.7938075132682675382911671098369487124493222183854 3 | 10.023477979360037978505391792081418280789658279097 */ /* [bessel_zero_output] boost::math::cyl_bessel_j_zero(0.0, 1) 2.40483 boost::math::cyl_bessel_j_zero(0.0, 1) 2.40482555769577 boost::math::cyl_bessel_j_zero(-1.0, 1) 1.#QNAN boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN 5.13562230184068 8.41724414039986 11.6198411721491 14.7959517823513 17.9598194949878 x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623 x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458 7.2731751938316489503185694262290765588963196701623 10.724858308883141732536172745851416647110749599085 14.018504599452388106120459558042660282427471931581 cyl_neumann_zero(2., 1) = 3.3842417671495935000000000000000000000000000000000 3.3842418193817139000000000000000000000000000000000 6.7938075065612793000000000000000000000000000000000 10.023477554321289000000000000000000000000000000000 3.6154383428745996706772556069431792744372398748422 nu = 1.00000, sum = 0.124990, exact = 0.125000 Throw exception Error in function boost::math::cyl_bessel_j_zero(double, int): Order argument is -1, but must be >= 0 ! Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): Order argument is 1.#INF, but must be finite >= 0 ! Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): Order argument is 1.#QNAN, but must be finite >= 0 ! Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): Requested the -1'th zero, but must be > 0 ! Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): Requested the -2147483648'th zero, but must be > 0 ! Throw exception Error in function boost::math::cyl_bessel_j_zero(long double, int): Requested the -2147483648'th zero, but must be > 0 ! ] [/bessel_zero_output] */