/////////////////////////////////////////////////////////////// // Copyright 2018 Nick Thompson. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt /*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers. In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers. */ //[mpc_eg #include #include #include template void complex_number_examples() { Complex z1{0, 1}; std::cout << std::setprecision(std::numeric_limits::digits10); std::cout << std::scientific << std::fixed; std::cout << "Print a complex number: " << z1 << std::endl; std::cout << "Square it : " << z1*z1 << std::endl; std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl; std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl; using std::abs; std::cout << "Absolute value : " << abs(z1) << std::endl; std::cout << "Argument : " << arg(z1) << std::endl; std::cout << "Norm : " << norm(z1) << std::endl; std::cout << "Complex conjugate : " << conj(z1) << std::endl; std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl; typename Complex::value_type r = 1; typename Complex::value_type theta = 0.8; using std::polar; std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl; std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl; std::cout << "\nElementary special functions:\n"; using std::exp; std::cout << "exp(z1) = " << exp(z1) << std::endl; using std::log; std::cout << "log(z1) = " << log(z1) << std::endl; using std::log10; std::cout << "log10(z1) = " << log10(z1) << std::endl; using std::pow; std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl; using std::sqrt; std::cout << "Take its square root : " << sqrt(z1) << std::endl; using std::sin; std::cout << "sin(z1) = " << sin(z1) << std::endl; using std::cos; std::cout << "cos(z1) = " << cos(z1) << std::endl; using std::tan; std::cout << "tan(z1) = " << tan(z1) << std::endl; using std::asin; std::cout << "asin(z1) = " << asin(z1) << std::endl; using std::acos; std::cout << "acos(z1) = " << acos(z1) << std::endl; using std::atan; std::cout << "atan(z1) = " << atan(z1) << std::endl; using std::sinh; std::cout << "sinh(z1) = " << sinh(z1) << std::endl; using std::cosh; std::cout << "cosh(z1) = " << cosh(z1) << std::endl; using std::tanh; std::cout << "tanh(z1) = " << tanh(z1) << std::endl; using std::asinh; std::cout << "asinh(z1) = " << asinh(z1) << std::endl; using std::acosh; std::cout << "acosh(z1) = " << acosh(z1) << std::endl; using std::atanh; std::cout << "atanh(z1) = " << atanh(z1) << std::endl; } int main() { std::cout << "First, some operations we usually perform with std::complex:\n"; complex_number_examples>(); std::cout << "\nNow the same operations performed using the MPC backend:\n"; complex_number_examples(); return 0; } //] /* //[mpc_out Print a complex number: (0.00000000000000000000000000000000000000000000000000,1.00000000000000000000000000000000000000000000000000) Square it : -1.00000000000000000000000000000000000000000000000000 Real part : 0.00000000000000000000000000000000000000000000000000 = 0.00000000000000000000000000000000000000000000000000 Imaginary part : 1.00000000000000000000000000000000000000000000000000 = 1.00000000000000000000000000000000000000000000000000 Absolute value : 1.00000000000000000000000000000000000000000000000000 Argument : 1.57079632679489661923132169163975144209858469968755 Norm : 1.00000000000000000000000000000000000000000000000000 Complex conjugate : (0.00000000000000000000000000000000000000000000000000,-1.00000000000000000000000000000000000000000000000000) Projection onto Riemann sphere: (0.00000000000000000000000000000000000000000000000000,1.00000000000000000000000000000000000000000000000000) Polar coordinates (phase = 0) : 1.00000000000000000000000000000000000000000000000000 Polar coordinates (phase !=0) : (0.69670670934716538906374002277244853473117519431538,0.71735609089952279256716781570337728075604730751255) Elementary special functions: exp(z1) = (0.54030230586813971740093660744297660373231042061792,0.84147098480789650665250232163029899962256306079837) log(z1) = (0.00000000000000000000000000000000000000000000000000,1.57079632679489661923132169163975144209858469968755) log10(z1) = (0.00000000000000000000000000000000000000000000000000,0.68218817692092067374289181271567788510506374186196) pow(z1, z1) = 0.20787957635076190854695561983497877003387784163177 Take its square root : (0.70710678118654752440084436210484903928483593768847,0.70710678118654752440084436210484903928483593768847) sin(z1) = (0.00000000000000000000000000000000000000000000000000,1.17520119364380145688238185059560081515571798133410) cos(z1) = 1.54308063481524377847790562075706168260152911236587 tan(z1) = (0.00000000000000000000000000000000000000000000000000,0.76159415595576488811945828260479359041276859725794) asin(z1) = (0.00000000000000000000000000000000000000000000000000,0.88137358701954302523260932497979230902816032826163) acos(z1) = (1.57079632679489661923132169163975144209858469968755,-0.88137358701954302523260932497979230902816032826163) atan(z1) = (0.00000000000000000000000000000000000000000000000000,inf) sinh(z1) = (0.00000000000000000000000000000000000000000000000000,0.84147098480789650665250232163029899962256306079837) cosh(z1) = 0.54030230586813971740093660744297660373231042061792 tanh(z1) = (0.00000000000000000000000000000000000000000000000000,1.55740772465490223050697480745836017308725077238152) asinh(z1) = (0.00000000000000000000000000000000000000000000000000,1.57079632679489661923132169163975144209858469968755) acosh(z1) = (0.88137358701954302523260932497979230902816032826163,1.57079632679489661923132169163975144209858469968755) atanh(z1) = (0.00000000000000000000000000000000000000000000000000,0.78539816339744830961566084581987572104929234984378) //] */