/* boost histogram.cpp graphical verification of distribution functions * * Copyright Jens Maurer 2000 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * $Id$ * * This test program allows to visibly examine the results of the * distribution functions. */ #include #include #include #include #include #include #include void plot_histogram(const std::vector& slots, int samples, double from, double to) { int m = *std::max_element(slots.begin(), slots.end()); const int nRows = 20; std::cout.setf(std::ios::fixed|std::ios::left); std::cout.precision(5); for(int r = 0; r < nRows; r++) { double y = ((nRows - r) * double(m))/(nRows * samples); std::cout << std::setw(10) << y << " "; for(unsigned int col = 0; col < slots.size(); col++) { char out = ' '; if(slots[col]/double(samples) >= y) out = 'x'; std::cout << out; } std::cout << std::endl; } std::cout << std::setw(12) << " " << std::setw(10) << from; std::cout.setf(std::ios::right, std::ios::adjustfield); std::cout << std::setw(slots.size()-10) << to << std::endl; } // I am not sure whether these two should be in the library as well // maintain sum of NumberGenerator results template class sum_result { public: typedef NumberGenerator base_type; typedef typename base_type::result_type result_type; explicit sum_result(const base_type & g) : gen(g), _sum(0) { } result_type operator()() { result_type r = gen(); _sum += r; return r; } base_type & base() { return gen; } Sum sum() const { return _sum; } void reset() { _sum = 0; } private: base_type gen; Sum _sum; }; // maintain square sum of NumberGenerator results template class squaresum_result { public: typedef NumberGenerator base_type; typedef typename base_type::result_type result_type; explicit squaresum_result(const base_type & g) : gen(g), _sum(0) { } result_type operator()() { result_type r = gen(); _sum += r*r; return r; } base_type & base() { return gen; } Sum squaresum() const { return _sum; } void reset() { _sum = 0; } private: base_type gen; Sum _sum; }; template void histogram(RNG base, int samples, double from, double to, const std::string & name) { typedef squaresum_result, double > SRNG; SRNG gen((sum_result(base))); const int nSlots = 60; std::vector slots(nSlots,0); for(int i = 0; i < samples; i++) { double val = gen(); if(val < from || val >= to) // early check avoids overflow continue; int slot = int((val-from)/(to-from) * nSlots); if(slot < 0 || slot > (int)slots.size()) continue; slots[slot]++; } std::cout << name << std::endl; plot_histogram(slots, samples, from, to); double mean = gen.base().sum() / samples; std::cout << "mean: " << mean << " sigma: " << std::sqrt(gen.squaresum()/samples-mean*mean) << "\n" << std::endl; } template inline boost::variate_generator make_gen(PRNG & rng, Dist d) { return boost::variate_generator(rng, d); } template void histograms() { PRNG rng; using namespace boost; histogram(make_gen(rng, uniform_smallint<>(0, 5)), 100000, -1, 6, "uniform_smallint(0,5)"); histogram(make_gen(rng, uniform_int<>(0, 5)), 100000, -1, 6, "uniform_int(0,5)"); histogram(make_gen(rng, uniform_real<>(0,1)), 100000, -0.5, 1.5, "uniform_real(0,1)"); histogram(make_gen(rng, bernoulli_distribution<>(0.2)), 100000, -0.5, 1.5, "bernoulli(0.2)"); histogram(make_gen(rng, binomial_distribution<>(4, 0.2)), 100000, -1, 5, "binomial(4, 0.2)"); histogram(make_gen(rng, triangle_distribution<>(1, 2, 8)), 100000, 0, 10, "triangle(1,2,8)"); histogram(make_gen(rng, geometric_distribution<>(5.0/6.0)), 100000, 0, 10, "geometric(5/6)"); histogram(make_gen(rng, exponential_distribution<>(0.3)), 100000, 0, 10, "exponential(0.3)"); histogram(make_gen(rng, cauchy_distribution<>()), 100000, -5, 5, "cauchy"); histogram(make_gen(rng, lognormal_distribution<>(3, 2)), 100000, 0, 10, "lognormal"); histogram(make_gen(rng, normal_distribution<>()), 100000, -3, 3, "normal"); histogram(make_gen(rng, normal_distribution<>(0.5, 0.5)), 100000, -3, 3, "normal(0.5, 0.5)"); histogram(make_gen(rng, poisson_distribution<>(1.5)), 100000, 0, 5, "poisson(1.5)"); histogram(make_gen(rng, poisson_distribution<>(10)), 100000, 0, 20, "poisson(10)"); histogram(make_gen(rng, gamma_distribution<>(0.5)), 100000, 0, 0.5, "gamma(0.5)"); histogram(make_gen(rng, gamma_distribution<>(1)), 100000, 0, 3, "gamma(1)"); histogram(make_gen(rng, gamma_distribution<>(2)), 100000, 0, 6, "gamma(2)"); } int main() { histograms(); // histograms(); }