// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastDump.h" duFileIO::~duFileIO() { // Empty } static void ioprintf(duFileIO* io, const char* format, ...) { char line[256]; va_list ap; va_start(ap, format); const int n = vsnprintf(line, sizeof(line), format, ap); va_end(ap); if (n > 0) io->write(line, sizeof(char)*n); } bool duDumpPolyMeshToObj(rcPolyMesh& pmesh, duFileIO* io) { if (!io) { printf("duDumpPolyMeshToObj: input IO is null.\n"); return false; } if (!io->isWriting()) { printf("duDumpPolyMeshToObj: input IO not writing.\n"); return false; } const int nvp = pmesh.nvp; const float cs = pmesh.cs; const float ch = pmesh.ch; const float* orig = pmesh.bmin; ioprintf(io, "# Recast Navmesh\n"); ioprintf(io, "o NavMesh\n"); ioprintf(io, "\n"); for (int i = 0; i < pmesh.nverts; ++i) { const unsigned short* v = &pmesh.verts[i*3]; const float x = orig[0] + v[0]*cs; const float y = orig[1] + (v[1]+1)*ch + 0.1f; const float z = orig[2] + v[2]*cs; ioprintf(io, "v %f %f %f\n", x,y,z); } ioprintf(io, "\n"); for (int i = 0; i < pmesh.npolys; ++i) { const unsigned short* p = &pmesh.polys[i*nvp*2]; for (int j = 2; j < nvp; ++j) { if (p[j] == RC_MESH_NULL_IDX) break; ioprintf(io, "f %d %d %d\n", p[0]+1, p[j-1]+1, p[j]+1); } } return true; } bool duDumpPolyMeshDetailToObj(rcPolyMeshDetail& dmesh, duFileIO* io) { if (!io) { printf("duDumpPolyMeshDetailToObj: input IO is null.\n"); return false; } if (!io->isWriting()) { printf("duDumpPolyMeshDetailToObj: input IO not writing.\n"); return false; } ioprintf(io, "# Recast Navmesh\n"); ioprintf(io, "o NavMesh\n"); ioprintf(io, "\n"); for (int i = 0; i < dmesh.nverts; ++i) { const float* v = &dmesh.verts[i*3]; ioprintf(io, "v %f %f %f\n", v[0],v[1],v[2]); } ioprintf(io, "\n"); for (int i = 0; i < dmesh.nmeshes; ++i) { const unsigned int* m = &dmesh.meshes[i*4]; const unsigned int bverts = m[0]; const unsigned int btris = m[2]; const unsigned int ntris = m[3]; const unsigned char* tris = &dmesh.tris[btris*4]; for (unsigned int j = 0; j < ntris; ++j) { ioprintf(io, "f %d %d %d\n", (int)(bverts+tris[j*4+0])+1, (int)(bverts+tris[j*4+1])+1, (int)(bverts+tris[j*4+2])+1); } } return true; } static const int CSET_MAGIC = ('c' << 24) | ('s' << 16) | ('e' << 8) | 't'; static const int CSET_VERSION = 2; bool duDumpContourSet(struct rcContourSet& cset, duFileIO* io) { if (!io) { printf("duDumpContourSet: input IO is null.\n"); return false; } if (!io->isWriting()) { printf("duDumpContourSet: input IO not writing.\n"); return false; } io->write(&CSET_MAGIC, sizeof(CSET_MAGIC)); io->write(&CSET_VERSION, sizeof(CSET_VERSION)); io->write(&cset.nconts, sizeof(cset.nconts)); io->write(cset.bmin, sizeof(cset.bmin)); io->write(cset.bmax, sizeof(cset.bmax)); io->write(&cset.cs, sizeof(cset.cs)); io->write(&cset.ch, sizeof(cset.ch)); io->write(&cset.width, sizeof(cset.width)); io->write(&cset.height, sizeof(cset.height)); io->write(&cset.borderSize, sizeof(cset.borderSize)); for (int i = 0; i < cset.nconts; ++i) { const rcContour& cont = cset.conts[i]; io->write(&cont.nverts, sizeof(cont.nverts)); io->write(&cont.nrverts, sizeof(cont.nrverts)); io->write(&cont.reg, sizeof(cont.reg)); io->write(&cont.area, sizeof(cont.area)); io->write(cont.verts, sizeof(int)*4*cont.nverts); io->write(cont.rverts, sizeof(int)*4*cont.nrverts); } return true; } bool duReadContourSet(struct rcContourSet& cset, duFileIO* io) { if (!io) { printf("duReadContourSet: input IO is null.\n"); return false; } if (!io->isReading()) { printf("duReadContourSet: input IO not reading.\n"); return false; } int magic = 0; int version = 0; io->read(&magic, sizeof(magic)); io->read(&version, sizeof(version)); if (magic != CSET_MAGIC) { printf("duReadContourSet: Bad voodoo.\n"); return false; } if (version != CSET_VERSION) { printf("duReadContourSet: Bad version.\n"); return false; } io->read(&cset.nconts, sizeof(cset.nconts)); cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*cset.nconts, RC_ALLOC_PERM); if (!cset.conts) { printf("duReadContourSet: Could not alloc contours (%d)\n", cset.nconts); return false; } memset(cset.conts, 0, sizeof(rcContour)*cset.nconts); io->read(cset.bmin, sizeof(cset.bmin)); io->read(cset.bmax, sizeof(cset.bmax)); io->read(&cset.cs, sizeof(cset.cs)); io->read(&cset.ch, sizeof(cset.ch)); io->read(&cset.width, sizeof(cset.width)); io->read(&cset.height, sizeof(cset.height)); io->read(&cset.borderSize, sizeof(cset.borderSize)); for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; io->read(&cont.nverts, sizeof(cont.nverts)); io->read(&cont.nrverts, sizeof(cont.nrverts)); io->read(&cont.reg, sizeof(cont.reg)); io->read(&cont.area, sizeof(cont.area)); cont.verts = (int*)rcAlloc(sizeof(int)*4*cont.nverts, RC_ALLOC_PERM); if (!cont.verts) { printf("duReadContourSet: Could not alloc contour verts (%d)\n", cont.nverts); return false; } cont.rverts = (int*)rcAlloc(sizeof(int)*4*cont.nrverts, RC_ALLOC_PERM); if (!cont.rverts) { printf("duReadContourSet: Could not alloc contour rverts (%d)\n", cont.nrverts); return false; } io->read(cont.verts, sizeof(int)*4*cont.nverts); io->read(cont.rverts, sizeof(int)*4*cont.nrverts); } return true; } static const int CHF_MAGIC = ('r' << 24) | ('c' << 16) | ('h' << 8) | 'f'; static const int CHF_VERSION = 3; bool duDumpCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io) { if (!io) { printf("duDumpCompactHeightfield: input IO is null.\n"); return false; } if (!io->isWriting()) { printf("duDumpCompactHeightfield: input IO not writing.\n"); return false; } io->write(&CHF_MAGIC, sizeof(CHF_MAGIC)); io->write(&CHF_VERSION, sizeof(CHF_VERSION)); io->write(&chf.width, sizeof(chf.width)); io->write(&chf.height, sizeof(chf.height)); io->write(&chf.spanCount, sizeof(chf.spanCount)); io->write(&chf.walkableHeight, sizeof(chf.walkableHeight)); io->write(&chf.walkableClimb, sizeof(chf.walkableClimb)); io->write(&chf.borderSize, sizeof(chf.borderSize)); io->write(&chf.maxDistance, sizeof(chf.maxDistance)); io->write(&chf.maxRegions, sizeof(chf.maxRegions)); io->write(chf.bmin, sizeof(chf.bmin)); io->write(chf.bmax, sizeof(chf.bmax)); io->write(&chf.cs, sizeof(chf.cs)); io->write(&chf.ch, sizeof(chf.ch)); int tmp = 0; if (chf.cells) tmp |= 1; if (chf.spans) tmp |= 2; if (chf.dist) tmp |= 4; if (chf.areas) tmp |= 8; io->write(&tmp, sizeof(tmp)); if (chf.cells) io->write(chf.cells, sizeof(rcCompactCell)*chf.width*chf.height); if (chf.spans) io->write(chf.spans, sizeof(rcCompactSpan)*chf.spanCount); if (chf.dist) io->write(chf.dist, sizeof(unsigned short)*chf.spanCount); if (chf.areas) io->write(chf.areas, sizeof(unsigned char)*chf.spanCount); return true; } bool duReadCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io) { if (!io) { printf("duReadCompactHeightfield: input IO is null.\n"); return false; } if (!io->isReading()) { printf("duReadCompactHeightfield: input IO not reading.\n"); return false; } int magic = 0; int version = 0; io->read(&magic, sizeof(magic)); io->read(&version, sizeof(version)); if (magic != CHF_MAGIC) { printf("duReadCompactHeightfield: Bad voodoo.\n"); return false; } if (version != CHF_VERSION) { printf("duReadCompactHeightfield: Bad version.\n"); return false; } io->read(&chf.width, sizeof(chf.width)); io->read(&chf.height, sizeof(chf.height)); io->read(&chf.spanCount, sizeof(chf.spanCount)); io->read(&chf.walkableHeight, sizeof(chf.walkableHeight)); io->read(&chf.walkableClimb, sizeof(chf.walkableClimb)); io->read(&chf.borderSize, sizeof(chf.borderSize)); io->read(&chf.maxDistance, sizeof(chf.maxDistance)); io->read(&chf.maxRegions, sizeof(chf.maxRegions)); io->read(chf.bmin, sizeof(chf.bmin)); io->read(chf.bmax, sizeof(chf.bmax)); io->read(&chf.cs, sizeof(chf.cs)); io->read(&chf.ch, sizeof(chf.ch)); int tmp = 0; io->read(&tmp, sizeof(tmp)); if (tmp & 1) { chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*chf.width*chf.height, RC_ALLOC_PERM); if (!chf.cells) { printf("duReadCompactHeightfield: Could not alloc cells (%d)\n", chf.width*chf.height); return false; } io->read(chf.cells, sizeof(rcCompactCell)*chf.width*chf.height); } if (tmp & 2) { chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*chf.spanCount, RC_ALLOC_PERM); if (!chf.spans) { printf("duReadCompactHeightfield: Could not alloc spans (%d)\n", chf.spanCount); return false; } io->read(chf.spans, sizeof(rcCompactSpan)*chf.spanCount); } if (tmp & 4) { chf.dist = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_PERM); if (!chf.dist) { printf("duReadCompactHeightfield: Could not alloc dist (%d)\n", chf.spanCount); return false; } io->read(chf.dist, sizeof(unsigned short)*chf.spanCount); } if (tmp & 8) { chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_PERM); if (!chf.areas) { printf("duReadCompactHeightfield: Could not alloc areas (%d)\n", chf.spanCount); return false; } io->read(chf.areas, sizeof(unsigned char)*chf.spanCount); } return true; } static void logLine(rcContext& ctx, rcTimerLabel label, const char* name, const float pc) { const int t = ctx.getAccumulatedTime(label); if (t < 0) return; ctx.log(RC_LOG_PROGRESS, "%s:\t%.2fms\t(%.1f%%)", name, t/1000.0f, t*pc); } void duLogBuildTimes(rcContext& ctx, const int totalTimeUsec) { const float pc = 100.0f / totalTimeUsec; ctx.log(RC_LOG_PROGRESS, "Build Times"); logLine(ctx, RC_TIMER_RASTERIZE_TRIANGLES, "- Rasterize", pc); logLine(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD, "- Build Compact", pc); logLine(ctx, RC_TIMER_FILTER_BORDER, "- Filter Border", pc); logLine(ctx, RC_TIMER_FILTER_WALKABLE, "- Filter Walkable", pc); logLine(ctx, RC_TIMER_ERODE_AREA, "- Erode Area", pc); logLine(ctx, RC_TIMER_MEDIAN_AREA, "- Median Area", pc); logLine(ctx, RC_TIMER_MARK_BOX_AREA, "- Mark Box Area", pc); logLine(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA, "- Mark Convex Area", pc); logLine(ctx, RC_TIMER_MARK_CYLINDER_AREA, "- Mark Cylinder Area", pc); logLine(ctx, RC_TIMER_BUILD_DISTANCEFIELD, "- Build Distance Field", pc); logLine(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST, " - Distance", pc); logLine(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR, " - Blur", pc); logLine(ctx, RC_TIMER_BUILD_REGIONS, "- Build Regions", pc); logLine(ctx, RC_TIMER_BUILD_REGIONS_WATERSHED, " - Watershed", pc); logLine(ctx, RC_TIMER_BUILD_REGIONS_EXPAND, " - Expand", pc); logLine(ctx, RC_TIMER_BUILD_REGIONS_FLOOD, " - Find Basins", pc); logLine(ctx, RC_TIMER_BUILD_REGIONS_FILTER, " - Filter", pc); logLine(ctx, RC_TIMER_BUILD_LAYERS, "- Build Layers", pc); logLine(ctx, RC_TIMER_BUILD_CONTOURS, "- Build Contours", pc); logLine(ctx, RC_TIMER_BUILD_CONTOURS_TRACE, " - Trace", pc); logLine(ctx, RC_TIMER_BUILD_CONTOURS_SIMPLIFY, " - Simplify", pc); logLine(ctx, RC_TIMER_BUILD_POLYMESH, "- Build Polymesh", pc); logLine(ctx, RC_TIMER_BUILD_POLYMESHDETAIL, "- Build Polymesh Detail", pc); logLine(ctx, RC_TIMER_MERGE_POLYMESH, "- Merge Polymeshes", pc); logLine(ctx, RC_TIMER_MERGE_POLYMESHDETAIL, "- Merge Polymesh Details", pc); ctx.log(RC_LOG_PROGRESS, "=== TOTAL:\t%.2fms", totalTimeUsec/1000.0f); }