// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018. // Modifications copyright (c) 2017-2018 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP #include #include #include #include #include #include #include #include #include #include #if defined(BOOST_GEOMETRY_DEBUG_INTERSECTION) \ || defined(BOOST_GEOMETRY_OVERLAY_REPORT_WKT) \ || defined(BOOST_GEOMETRY_DEBUG_TRAVERSE) # include # include # include #endif namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace overlay { template #ifdef BOOST_GEOMETRY_DEBUG_TRAVERSE inline void debug_traverse(Turn const& turn, Operation op, std::string const& header, bool condition = true) { if (! condition) { return; } std::cout << " " << header << " at " << op.seg_id << " meth: " << method_char(turn.method) << " op: " << operation_char(op.operation) << " vis: " << visited_char(op.visited) << " of: " << operation_char(turn.operations[0].operation) << operation_char(turn.operations[1].operation) << " " << geometry::wkt(turn.point) << std::endl; if (boost::contains(header, "Finished")) { std::cout << std::endl; } } #else inline void debug_traverse(Turn const& , Operation, const char*, bool = true) { } #endif template < bool Reverse1, bool Reverse2, overlay_type OverlayType, typename Geometry1, typename Geometry2, typename Turns, typename Clusters, typename RobustPolicy, typename SideStrategy, typename Visitor > struct traversal { private : struct linked_turn_op_info { explicit linked_turn_op_info(signed_size_type ti = -1, int oi = -1, signed_size_type nti = -1) : turn_index(ti) , op_index(oi) , next_turn_index(nti) , rank_index(-1) {} signed_size_type turn_index; int op_index; signed_size_type next_turn_index; signed_size_type rank_index; }; static const operation_type target_operation = operation_from_overlay::value; typedef typename sort_by_side::side_compare::type side_compare_type; typedef typename boost::range_value::type turn_type; typedef typename turn_type::turn_operation_type turn_operation_type; typedef typename geometry::point_type::type point_type; typedef sort_by_side::side_sorter < Reverse1, Reverse2, OverlayType, point_type, SideStrategy, side_compare_type > sbs_type; public : inline traversal(Geometry1 const& geometry1, Geometry2 const& geometry2, Turns& turns, Clusters const& clusters, RobustPolicy const& robust_policy, SideStrategy const& strategy, Visitor& visitor) : m_geometry1(geometry1) , m_geometry2(geometry2) , m_turns(turns) , m_clusters(clusters) , m_robust_policy(robust_policy) , m_strategy(strategy) , m_visitor(visitor) { } template inline void finalize_visit_info(TurnInfoMap& turn_info_map) { for (typename boost::range_iterator::type it = boost::begin(m_turns); it != boost::end(m_turns); ++it) { turn_type& turn = *it; for (int i = 0; i < 2; i++) { turn_operation_type& op = turn.operations[i]; if (op.visited.visited() || op.visited.started() || op.visited.finished() ) { ring_identifier const ring_id ( op.seg_id.source_index, op.seg_id.multi_index, op.seg_id.ring_index ); turn_info_map[ring_id].has_traversed_turn = true; if (op.operation == operation_continue) { // Continue operations should mark the other operation // as traversed too turn_operation_type& other_op = turn.operations[1 - i]; ring_identifier const other_ring_id ( other_op.seg_id.source_index, other_op.seg_id.multi_index, other_op.seg_id.ring_index ); turn_info_map[other_ring_id].has_traversed_turn = true; } } op.visited.finalize(); } } } //! Sets visited for ALL turns traveling to the same turn inline void set_visited_in_cluster(signed_size_type cluster_id, signed_size_type rank) { typename Clusters::const_iterator mit = m_clusters.find(cluster_id); BOOST_ASSERT(mit != m_clusters.end()); cluster_info const& cinfo = mit->second; std::set const& ids = cinfo.turn_indices; for (typename std::set::const_iterator it = ids.begin(); it != ids.end(); ++it) { signed_size_type const turn_index = *it; turn_type& turn = m_turns[turn_index]; for (int i = 0; i < 2; i++) { turn_operation_type& op = turn.operations[i]; if (op.visited.none() && op.enriched.rank == rank) { op.visited.set_visited(); } } } } inline void set_visited(turn_type& turn, turn_operation_type& op) { if (op.operation == detail::overlay::operation_continue) { // On "continue", all go in same direction so set "visited" for ALL for (int i = 0; i < 2; i++) { turn_operation_type& turn_op = turn.operations[i]; if (turn_op.visited.none()) { turn_op.visited.set_visited(); } } } else { op.visited.set_visited(); } if (turn.is_clustered()) { set_visited_in_cluster(turn.cluster_id, op.enriched.rank); } } inline bool is_visited(turn_type const& , turn_operation_type const& op, signed_size_type , int) const { return op.visited.visited(); } template inline bool select_source_generic(turn_type const& turn, segment_identifier const& current, segment_identifier const& previous) const { turn_operation_type const& op0 = turn.operations[0]; turn_operation_type const& op1 = turn.operations[1]; bool const switch_source = op0.enriched.region_id != -1 && op0.enriched.region_id == op1.enriched.region_id; #if defined(BOOST_GEOMETRY_DEBUG_TRAVERSAL_SWITCH_DETECTOR) if (switch_source) { std::cout << "Switch source at " << &turn << std::endl; } else { std::cout << "DON'T SWITCH SOURCES at " << &turn << std::endl; } #endif return switch_source ? current.*Member != previous.*Member : current.*Member == previous.*Member; } inline bool select_source(turn_type const& turn, segment_identifier const& candidate_seg_id, segment_identifier const& previous_seg_id) const { // For uu/ii, only switch sources if indicated if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_buffer)) { // Buffer does not use source_index (always 0). return select_source_generic<&segment_identifier::multi_index>( turn, candidate_seg_id, previous_seg_id); } if (is_self_turn(turn)) { // Also, if it is a self-turn, stay on same ring (multi/ring) return select_source_generic<&segment_identifier::multi_index>( turn, candidate_seg_id, previous_seg_id); } // Use source_index return select_source_generic<&segment_identifier::source_index>( turn, candidate_seg_id, previous_seg_id); } inline bool traverse_possible(signed_size_type turn_index) const { if (turn_index == -1) { return false; } turn_type const& turn = m_turns[turn_index]; // It is not a dead end if there is an operation to continue, or of // there is a cluster (assuming for now we can get out of the cluster) return turn.is_clustered() || turn.has(target_operation) || turn.has(operation_continue); } inline std::size_t get_shortcut_level(turn_operation_type const& op, signed_size_type start_turn_index, signed_size_type origin_turn_index, std::size_t level = 1) const { signed_size_type next_turn_index = op.enriched.get_next_turn_index(); if (next_turn_index == -1) { return 0; } if (next_turn_index == start_turn_index) { // This operation finishes the ring return 0; } if (next_turn_index == origin_turn_index) { // This operation travels to itself return level; } if (level > 10) { // Avoid infinite recursion return 0; } turn_type const& next_turn = m_turns[next_turn_index]; for (int i = 0; i < 2; i++) { turn_operation_type const& next_op = next_turn.operations[i]; if (next_op.operation == target_operation && ! next_op.visited.finished() && ! next_op.visited.visited()) { // Recursively continue verifying if (get_shortcut_level(next_op, start_turn_index, origin_turn_index, level + 1)) { return level + 1; } } } return 0; } inline bool select_cc_operation(turn_type const& turn, signed_size_type start_turn_index, int& selected_op_index) const { // For "cc", take either one, but if there is a starting one, // take that one. If next is dead end, skip that one. // If both are valid candidates, take the one with minimal remaining // distance (important for #mysql_23023665 in buffer). signed_size_type next[2] = {0}; bool possible[2] = {0}; bool close[2] = {0}; for (int i = 0; i < 2; i++) { next[i] = turn.operations[i].enriched.get_next_turn_index(); possible[i] = traverse_possible(next[i]); close[i] = possible[i] && next[i] == start_turn_index; } if (close[0] != close[1]) { // One of the operations will finish the ring. Take that one. selected_op_index = close[0] ? 0 : 1; debug_traverse(turn, turn.operations[selected_op_index], "Candidate cc closing"); return true; } if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_buffer) && possible[0] && possible[1]) { // Buffers sometimes have multiple overlapping pieces, where remaining // distance could lead to the wrong choice. Take the matching operation. bool is_target[2] = {0}; for (int i = 0; i < 2; i++) { turn_operation_type const& next_op = m_turns[next[i]].operations[i]; is_target[i] = next_op.operation == target_operation; } if (is_target[0] != is_target[1]) { // Take the matching operation selected_op_index = is_target[0] ? 0 : 1; debug_traverse(turn, turn.operations[selected_op_index], "Candidate cc target"); return true; } } static bool const is_union = target_operation == operation_union; typename turn_operation_type::comparable_distance_type best_remaining_distance = 0; bool result = false; for (int i = 0; i < 2; i++) { if (!possible[i]) { continue; } turn_operation_type const& op = turn.operations[i]; if (! result || (is_union && op.remaining_distance > best_remaining_distance) || (!is_union && op.remaining_distance < best_remaining_distance)) { debug_traverse(turn, op, "First candidate cc", ! result); debug_traverse(turn, op, "Candidate cc override (remaining)", result && op.remaining_distance < best_remaining_distance); selected_op_index = i; best_remaining_distance = op.remaining_distance; result = true; } } return result; } inline bool select_noncc_operation(turn_type const& turn, segment_identifier const& previous_seg_id, int& selected_op_index) const { bool result = false; for (int i = 0; i < 2; i++) { turn_operation_type const& op = turn.operations[i]; if (op.operation == target_operation && ! op.visited.finished() && ! op.visited.visited() && (! result || select_source(turn, op.seg_id, previous_seg_id))) { selected_op_index = i; debug_traverse(turn, op, "Candidate"); result = true; } } return result; } inline bool select_preferred_operation(turn_type const& turn, signed_size_type turn_index, signed_size_type start_turn_index, int& selected_op_index) const { bool option[2] = {0}; bool finishing[2] = {0}; bool preferred[2] = {0}; std::size_t shortcut_level[2] = {0}; for (int i = 0; i < 2; i++) { turn_operation_type const& op = turn.operations[i]; if (op.operation == target_operation && ! op.visited.finished() && ! op.visited.visited()) { option[i] = true; if (op.enriched.get_next_turn_index() == start_turn_index) { finishing[i] = true; } else { shortcut_level[i] = get_shortcut_level(op, start_turn_index, turn_index); } if (op.enriched.prefer_start) { preferred[i] = true; } } } if (option[0] != option[1]) { // Only one operation is acceptable, take that one selected_op_index = option[0] ? 0 : 1; return true; } if (option[0] && option[1]) { // Both operations are acceptable if (finishing[0] != finishing[1]) { // Prefer operation finishing the ring selected_op_index = finishing[0] ? 0 : 1; return true; } if (shortcut_level[0] != shortcut_level[1]) { // If a turn can travel to itself again (without closing the // ring), take the shortest one selected_op_index = shortcut_level[0] < shortcut_level[1] ? 0 : 1; return true; } if (preferred[0] != preferred[1]) { // Only one operation is preferred (== was not intersection) selected_op_index = preferred[0] ? 0 : 1; return true; } } for (int i = 0; i < 2; i++) { if (option[i]) { selected_op_index = 0; return true; } } return false; } inline bool select_operation(const turn_type& turn, signed_size_type turn_index, signed_size_type start_turn_index, segment_identifier const& previous_seg_id, int& selected_op_index) const { bool result = false; selected_op_index = -1; if (turn.both(operation_continue)) { result = select_cc_operation(turn, start_turn_index, selected_op_index); } else if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_dissolve)) { result = select_preferred_operation(turn, turn_index, start_turn_index, selected_op_index); } else { result = select_noncc_operation(turn, previous_seg_id, selected_op_index); } if (result) { debug_traverse(turn, turn.operations[selected_op_index], "Accepted"); } return result; } inline int starting_operation_index(const turn_type& turn) const { for (int i = 0; i < 2; i++) { if (turn.operations[i].visited.started()) { return i; } } return -1; } inline bool both_finished(const turn_type& turn) const { for (int i = 0; i < 2; i++) { if (! turn.operations[i].visited.finished()) { return false; } } return true; } template inline turn_operation_type const& operation_from_rank(RankedPoint const& rp) const { return m_turns[rp.turn_index].operations[rp.operation_index]; } inline int select_turn_in_cluster_union(sort_by_side::rank_type selected_rank, typename sbs_type::rp const& ranked_point, signed_size_type start_turn_index, int start_op_index) const { // Returns 0 if it not OK // Returns 1 if it OK // Returns 2 if it OK and start turn matches // Returns 3 if it OK and start turn and start op both match if (ranked_point.rank != selected_rank || ranked_point.direction != sort_by_side::dir_to) { return 0; } turn_operation_type const& op = operation_from_rank(ranked_point); // Check finalized: TODO: this should be finetuned, it is not necessary if (op.visited.finalized()) { return 0; } if (BOOST_GEOMETRY_CONDITION(OverlayType != overlay_dissolve) && (op.enriched.count_left != 0 || op.enriched.count_right == 0)) { // Check counts: in some cases interior rings might be generated with // polygons on both sides. For dissolve it can be anything. return 0; } return ranked_point.turn_index == start_turn_index && ranked_point.operation_index == start_op_index ? 3 : ranked_point.turn_index == start_turn_index ? 2 : 1 ; } inline sort_by_side::rank_type select_rank(sbs_type const& sbs, bool skip_isolated) const { // Take the first outgoing rank corresponding to incoming region, // or take another region if it is not isolated turn_operation_type const& incoming_op = operation_from_rank(sbs.m_ranked_points.front()); for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++) { typename sbs_type::rp const& rp = sbs.m_ranked_points[i]; if (rp.rank == 0 || rp.direction == sort_by_side::dir_from) { continue; } turn_operation_type const& op = operation_from_rank(rp); if (op.operation != target_operation && op.operation != operation_continue) { continue; } if (op.enriched.region_id == incoming_op.enriched.region_id || (skip_isolated && ! op.enriched.isolated)) { // Region corresponds to incoming region, or (for intersection) // there is a non-isolated other region which should be taken return rp.rank; } } return -1; } inline bool select_from_cluster_union(signed_size_type& turn_index, int& op_index, sbs_type const& sbs, signed_size_type start_turn_index, int start_op_index) const { sort_by_side::rank_type const selected_rank = select_rank(sbs, false); int best_code = 0; bool result = false; for (std::size_t i = 1; i < sbs.m_ranked_points.size(); i++) { typename sbs_type::rp const& ranked_point = sbs.m_ranked_points[i]; if (ranked_point.rank > selected_rank) { // Sorted on rank, so it makes no sense to continue break; } int const code = select_turn_in_cluster_union(selected_rank, ranked_point, start_turn_index, start_op_index); if (code > best_code) { // It is 1 or higher and matching better than previous best_code = code; turn_index = ranked_point.turn_index; op_index = ranked_point.operation_index; result = true; } } return result; } inline bool analyze_cluster_intersection(signed_size_type& turn_index, int& op_index, sbs_type const& sbs) const { sort_by_side::rank_type const selected_rank = select_rank(sbs, true); if (selected_rank > 0) { typename turn_operation_type::comparable_distance_type min_remaining_distance = 0; std::size_t selected_index = sbs.m_ranked_points.size(); for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++) { typename sbs_type::rp const& ranked_point = sbs.m_ranked_points[i]; if (ranked_point.rank == selected_rank) { turn_operation_type const& op = operation_from_rank(ranked_point); if (op.visited.finalized()) { // This direction is already traveled before, the same // cannot be traveled again continue; } // Take turn with the smallest remaining distance if (selected_index == sbs.m_ranked_points.size() || op.remaining_distance < min_remaining_distance) { selected_index = i; min_remaining_distance = op.remaining_distance; } } } if (selected_index < sbs.m_ranked_points.size()) { typename sbs_type::rp const& ranked_point = sbs.m_ranked_points[selected_index]; turn_index = ranked_point.turn_index; op_index = ranked_point.operation_index; return true; } } return false; } inline signed_size_type get_rank(sbs_type const& sbs, linked_turn_op_info const& info) const { for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++) { typename sbs_type::rp const& rp = sbs.m_ranked_points[i]; if (rp.turn_index == info.turn_index && rp.operation_index == info.op_index && rp.direction == sort_by_side::dir_to) { return rp.rank; } } return -1; } // Function checks simple cases, such as a cluster with two turns, // arriving at the first turn, first turn points to second turn, // second turn points further. inline bool select_turn_from_cluster_linked(signed_size_type& turn_index, int& op_index, std::set const& ids, segment_identifier const& previous_seg_id) const { typedef typename std::set::const_iterator sit_type; std::vector possibilities; std::vector blocked; for (sit_type it = ids.begin(); it != ids.end(); ++it) { signed_size_type cluster_turn_index = *it; turn_type const& cluster_turn = m_turns[cluster_turn_index]; if (cluster_turn.discarded) { continue; } if (cluster_turn.both(target_operation)) { // Not (yet) supported, can be cluster of u/u turns return false; } for (int i = 0; i < 2; i++) { turn_operation_type const& op = cluster_turn.operations[i]; turn_operation_type const& other_op = cluster_turn.operations[1 - i]; signed_size_type const ni = op.enriched.get_next_turn_index(); if (op.operation == target_operation || op.operation == operation_continue) { if (ni == cluster_turn_index) { // Not (yet) supported, traveling to itself, can be // hole return false; } possibilities.push_back( linked_turn_op_info(cluster_turn_index, i, ni)); } else if (op.operation == operation_blocked && ! (ni == other_op.enriched.get_next_turn_index()) && ids.count(ni) == 0) { // Points to turn, not part of this cluster, // and that way is blocked. But if the other operation // points at the same turn, it is still fine. blocked.push_back( linked_turn_op_info(cluster_turn_index, i, ni)); } } } typedef typename std::vector::const_iterator const_it_type; if (! blocked.empty()) { sbs_type sbs(m_strategy); if (! fill_sbs(sbs, turn_index, ids, previous_seg_id)) { return false; } for (typename std::vector::iterator it = possibilities.begin(); it != possibilities.end(); ++it) { linked_turn_op_info& info = *it; info.rank_index = get_rank(sbs, info); } for (typename std::vector::iterator it = blocked.begin(); it != blocked.end(); ++it) { linked_turn_op_info& info = *it; info.rank_index = get_rank(sbs, info); } for (const_it_type it = possibilities.begin(); it != possibilities.end(); ++it) { linked_turn_op_info const& lti = *it; for (const_it_type bit = blocked.begin(); bit != blocked.end(); ++bit) { linked_turn_op_info const& blti = *bit; if (blti.next_turn_index == lti.next_turn_index && blti.rank_index == lti.rank_index) { return false; } } } } // Traversal can either enter the cluster in the first turn, // or it can start halfway. // If there is one (and only one) possibility pointing outside // the cluster, take that one. linked_turn_op_info target; for (const_it_type it = possibilities.begin(); it != possibilities.end(); ++it) { linked_turn_op_info const& lti = *it; if (ids.count(lti.next_turn_index) == 0) { if (target.turn_index >= 0 && target.next_turn_index != lti.next_turn_index) { // Points to different target return false; } if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_buffer) && target.turn_index > 0) { // Target already assigned, so there are more targets // or more ways to the same target return false; } target = lti; } } if (target.turn_index < 0) { return false; } turn_index = target.turn_index; op_index = target.op_index; return true; } inline bool fill_sbs(sbs_type& sbs, signed_size_type turn_index, std::set const& ids, segment_identifier const& previous_seg_id) const { for (typename std::set::const_iterator sit = ids.begin(); sit != ids.end(); ++sit) { signed_size_type cluster_turn_index = *sit; turn_type const& cluster_turn = m_turns[cluster_turn_index]; bool const departure_turn = cluster_turn_index == turn_index; if (cluster_turn.discarded) { // Defensive check, discarded turns should not be in cluster continue; } for (int i = 0; i < 2; i++) { sbs.add(cluster_turn.operations[i], cluster_turn_index, i, previous_seg_id, m_geometry1, m_geometry2, departure_turn); } } if (! sbs.has_origin()) { return false; } turn_type const& turn = m_turns[turn_index]; sbs.apply(turn.point); return true; } inline bool select_turn_from_cluster(signed_size_type& turn_index, int& op_index, signed_size_type start_turn_index, int start_op_index, segment_identifier const& previous_seg_id) const { bool const is_union = target_operation == operation_union; turn_type const& turn = m_turns[turn_index]; BOOST_ASSERT(turn.is_clustered()); typename Clusters::const_iterator mit = m_clusters.find(turn.cluster_id); BOOST_ASSERT(mit != m_clusters.end()); cluster_info const& cinfo = mit->second; std::set const& ids = cinfo.turn_indices; if (select_turn_from_cluster_linked(turn_index, op_index, ids, previous_seg_id)) { return true; } sbs_type sbs(m_strategy); if (! fill_sbs(sbs, turn_index, ids, previous_seg_id)) { return false; } bool result = false; if (is_union) { result = select_from_cluster_union(turn_index, op_index, sbs, start_turn_index, start_op_index); } else { result = analyze_cluster_intersection(turn_index, op_index, sbs); } return result; } inline bool analyze_ii_intersection(signed_size_type& turn_index, int& op_index, turn_type const& current_turn, segment_identifier const& previous_seg_id) { sbs_type sbs(m_strategy); // Add this turn to the sort-by-side sorter for (int i = 0; i < 2; i++) { sbs.add(current_turn.operations[i], turn_index, i, previous_seg_id, m_geometry1, m_geometry2, true); } if (! sbs.has_origin()) { return false; } sbs.apply(current_turn.point); bool result = analyze_cluster_intersection(turn_index, op_index, sbs); return result; } inline void change_index_for_self_turn(signed_size_type& to_vertex_index, turn_type const& start_turn, turn_operation_type const& start_op, int start_op_index) const { if (BOOST_GEOMETRY_CONDITION(OverlayType != overlay_buffer && OverlayType != overlay_dissolve)) { return; } const bool allow_uu = OverlayType != overlay_buffer; // It travels to itself, can happen. If this is a buffer, it can // sometimes travel to itself in the following configuration: // // +---->--+ // | | // | +---*----+ *: one turn, with segment index 2/7 // | | | | // | +---C | C: closing point (start/end) // | | // +------------+ // // If it starts on segment 2 and travels to itself on segment 2, that // should be corrected to 7 because that is the shortest path // // Also a uu turn (touching with another buffered ring) might have this // apparent configuration, but there it should // always travel the whole ring turn_operation_type const& other_op = start_turn.operations[1 - start_op_index]; bool const correct = (allow_uu || ! start_turn.both(operation_union)) && start_op.seg_id.source_index == other_op.seg_id.source_index && start_op.seg_id.multi_index == other_op.seg_id.multi_index && start_op.seg_id.ring_index == other_op.seg_id.ring_index && start_op.seg_id.segment_index == to_vertex_index; #if defined(BOOST_GEOMETRY_DEBUG_TRAVERSE) std::cout << " WARNING: self-buffer " << " correct=" << correct << " turn=" << operation_char(start_turn.operations[0].operation) << operation_char(start_turn.operations[1].operation) << " start=" << start_op.seg_id.segment_index << " from=" << to_vertex_index << " to=" << other_op.enriched.travels_to_vertex_index << std::endl; #endif if (correct) { to_vertex_index = other_op.enriched.travels_to_vertex_index; } } bool select_turn_from_enriched(signed_size_type& turn_index, segment_identifier& previous_seg_id, signed_size_type& to_vertex_index, signed_size_type start_turn_index, int start_op_index, turn_type const& previous_turn, turn_operation_type const& previous_op, bool is_start) const { to_vertex_index = -1; if (previous_op.enriched.next_ip_index < 0) { // There is no next IP on this segment if (previous_op.enriched.travels_to_vertex_index < 0 || previous_op.enriched.travels_to_ip_index < 0) { return false; } to_vertex_index = previous_op.enriched.travels_to_vertex_index; if (is_start && previous_op.enriched.travels_to_ip_index == start_turn_index) { change_index_for_self_turn(to_vertex_index, previous_turn, previous_op, start_op_index); } turn_index = previous_op.enriched.travels_to_ip_index; previous_seg_id = previous_op.seg_id; } else { // Take the next IP on this segment turn_index = previous_op.enriched.next_ip_index; previous_seg_id = previous_op.seg_id; } return true; } bool select_turn(signed_size_type start_turn_index, int start_op_index, signed_size_type& turn_index, int& op_index, int previous_op_index, signed_size_type previous_turn_index, segment_identifier const& previous_seg_id, bool is_start, bool has_points) { turn_type const& current_turn = m_turns[turn_index]; if (BOOST_GEOMETRY_CONDITION(target_operation == operation_intersection)) { if (has_points) { bool const back_at_start_cluster = current_turn.is_clustered() && m_turns[start_turn_index].cluster_id == current_turn.cluster_id; if (turn_index == start_turn_index || back_at_start_cluster) { // Intersection can always be finished if returning turn_index = start_turn_index; op_index = start_op_index; return true; } } if (! current_turn.is_clustered() && current_turn.both(operation_intersection)) { if (analyze_ii_intersection(turn_index, op_index, current_turn, previous_seg_id)) { return true; } } } if (current_turn.is_clustered()) { if (! select_turn_from_cluster(turn_index, op_index, start_turn_index, start_op_index, previous_seg_id)) { return false; } if (is_start && turn_index == previous_turn_index) { op_index = previous_op_index; } } else { op_index = starting_operation_index(current_turn); if (op_index == -1) { if (both_finished(current_turn)) { return false; } if (! select_operation(current_turn, turn_index, start_turn_index, previous_seg_id, op_index)) { return false; } } } return true; } private : Geometry1 const& m_geometry1; Geometry2 const& m_geometry2; Turns& m_turns; Clusters const& m_clusters; RobustPolicy const& m_robust_policy; SideStrategy m_strategy; Visitor& m_visitor; }; }} // namespace detail::overlay #endif // DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP