// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2015 Bruno Lalande, Paris, France. // Copyright (c) 2009-2015 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2018. // Modifications copyright (c) 2018 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP #define BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace simplify { template inline bool is_degenerate(Range const& range, EqualsStrategy const& strategy) { return boost::size(range) == 2 && detail::equals::equals_point_point(geometry::range::front(range), geometry::range::back(range), strategy); } struct simplify_range_insert { template static inline void apply(Range const& range, OutputIterator out, Distance const& max_distance, Strategy const& strategy) { typedef typename Strategy::distance_strategy_type::equals_point_point_strategy_type equals_strategy_type; boost::ignore_unused(strategy); if (is_degenerate(range, equals_strategy_type())) { std::copy(boost::begin(range), boost::begin(range) + 1, out); } else if (boost::size(range) <= 2 || max_distance < 0) { std::copy(boost::begin(range), boost::end(range), out); } else { strategy.apply(range, out, max_distance); } } }; struct simplify_copy { template static inline void apply(RangeIn const& range, RangeOut& out, Distance const& , Strategy const& ) { std::copy ( boost::begin(range), boost::end(range), geometry::range::back_inserter(out) ); } }; template struct simplify_range { template static inline void apply(RangeIn const& range, RangeOut& out, Distance const& max_distance, Strategy const& strategy) { typedef typename Strategy::distance_strategy_type::equals_point_point_strategy_type equals_strategy_type; // For a RING: // Note that, especially if max_distance is too large, // the output ring might be self intersecting while the input ring is // not, although chances are low in normal polygons if (boost::size(range) <= MinimumToUseStrategy || max_distance < 0) { simplify_copy::apply(range, out, max_distance, strategy); } else { simplify_range_insert::apply ( range, geometry::range::back_inserter(out), max_distance, strategy ); } // Verify the two remaining points are equal. If so, remove one of them. // This can cause the output being under the minimum size if (is_degenerate(out, equals_strategy_type())) { range::resize(out, 1); } } }; struct simplify_ring { private : template static inline int area_sign(Area const& area) { return area > 0 ? 1 : area < 0 ? -1 : 0; } template static std::size_t get_opposite(std::size_t index, Ring const& ring) { typename Strategy::distance_strategy_type distance_strategy; // Verify if it is NOT the case that all points are less than the // simplifying distance. If so, output is empty. typename Strategy::distance_type max_distance(-1); typename geometry::point_type::type point = range::at(ring, index); std::size_t i = 0; for (typename boost::range_iterator::type it = boost::begin(ring); it != boost::end(ring); ++it, ++i) { // This actually is point-segment distance but will result // in point-point distance typename Strategy::distance_type dist = distance_strategy.apply(*it, point, point); if (dist > max_distance) { max_distance = dist; index = i; } } return index; } public : template static inline void apply(Ring const& ring, Ring& out, Distance const& max_distance, Strategy const& strategy) { std::size_t const size = boost::size(ring); if (size == 0) { return; } int const input_sign = area_sign(geometry::area(ring)); std::set visited_indexes; // Rotate it into a copied vector // (vector, because source type might not support rotation) // (duplicate end point will be simplified away) typedef typename geometry::point_type::type point_type; std::vector rotated(size); // Closing point (but it will not start here) std::size_t index = 0; // Iterate (usually one iteration is enough) for (std::size_t iteration = 0; iteration < 4u; iteration++) { // Always take the opposite. Opposite guarantees that no point // "halfway" is chosen, creating an artefact (very narrow triangle) // Iteration 0: opposite to closing point (1/2, = on convex hull) // (this will start simplification with that point // and its opposite ~0) // Iteration 1: move a quarter on that ring, then opposite to 1/4 // (with its opposite 3/4) // Iteration 2: move an eight on that ring, then opposite (1/8) // Iteration 3: again move a quarter, then opposite (7/8) // So finally 8 "sides" of the ring have been examined (if it were // a semi-circle). Most probably, there are only 0 or 1 iterations. switch (iteration) { case 1 : index = (index + size / 4) % size; break; case 2 : index = (index + size / 8) % size; break; case 3 : index = (index + size / 4) % size; break; } index = get_opposite(index, ring); if (visited_indexes.count(index) > 0) { // Avoid trying the same starting point more than once continue; } std::rotate_copy(boost::begin(ring), range::pos(ring, index), boost::end(ring), rotated.begin()); // Close the rotated copy rotated.push_back(range::at(ring, index)); simplify_range<0>::apply(rotated, out, max_distance, strategy); // Verify that what was positive, stays positive (or goes to 0) // and what was negative stays negative (or goes to 0) int const output_sign = area_sign(geometry::area(out)); if (output_sign == input_sign) { // Result is considered as satisfactory (usually this is the // first iteration - only for small rings, having a scale // similar to simplify_distance, next iterations are tried return; } // Original is simplified away. Possibly there is a solution // when another starting point is used geometry::clear(out); if (iteration == 0 && geometry::perimeter(ring) < 3 * max_distance) { // Check if it is useful to iterate. A minimal triangle has a // perimeter of a bit more than 3 times the simplify distance return; } // Prepare next try visited_indexes.insert(index); rotated.resize(size); } } }; struct simplify_polygon { private: template < typename IteratorIn, typename InteriorRingsOut, typename Distance, typename Strategy > static inline void iterate(IteratorIn begin, IteratorIn end, InteriorRingsOut& interior_rings_out, Distance const& max_distance, Strategy const& strategy) { typedef typename boost::range_value::type single_type; for (IteratorIn it = begin; it != end; ++it) { single_type out; simplify_ring::apply(*it, out, max_distance, strategy); if (! geometry::is_empty(out)) { range::push_back(interior_rings_out, out); } } } template < typename InteriorRingsIn, typename InteriorRingsOut, typename Distance, typename Strategy > static inline void apply_interior_rings( InteriorRingsIn const& interior_rings_in, InteriorRingsOut& interior_rings_out, Distance const& max_distance, Strategy const& strategy) { range::clear(interior_rings_out); iterate( boost::begin(interior_rings_in), boost::end(interior_rings_in), interior_rings_out, max_distance, strategy); } public: template static inline void apply(Polygon const& poly_in, Polygon& poly_out, Distance const& max_distance, Strategy const& strategy) { // Note that if there are inner rings, and distance is too large, // they might intersect with the outer ring in the output, // while it didn't in the input. simplify_ring::apply(exterior_ring(poly_in), exterior_ring(poly_out), max_distance, strategy); apply_interior_rings(interior_rings(poly_in), interior_rings(poly_out), max_distance, strategy); } }; template struct simplify_multi { template static inline void apply(MultiGeometry const& multi, MultiGeometry& out, Distance const& max_distance, Strategy const& strategy) { range::clear(out); typedef typename boost::range_value::type single_type; for (typename boost::range_iterator::type it = boost::begin(multi); it != boost::end(multi); ++it) { single_type single_out; Policy::apply(*it, single_out, max_distance, strategy); if (! geometry::is_empty(single_out)) { range::push_back(out, single_out); } } } }; }} // namespace detail::simplify #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry, typename Tag = typename tag::type > struct simplify: not_implemented {}; template struct simplify { template static inline void apply(Point const& point, Point& out, Distance const& , Strategy const& ) { geometry::convert(point, out); } }; // Linestring, keep 2 points (unless those points are the same) template struct simplify : detail::simplify::simplify_range<2> {}; template struct simplify : detail::simplify::simplify_ring {}; template struct simplify : detail::simplify::simplify_polygon {}; template < typename Geometry, typename Tag = typename tag::type > struct simplify_insert: not_implemented {}; template struct simplify_insert : detail::simplify::simplify_range_insert {}; template struct simplify_insert : detail::simplify::simplify_range_insert {}; template struct simplify : detail::simplify::simplify_copy {}; template struct simplify : detail::simplify::simplify_multi > {}; template struct simplify : detail::simplify::simplify_multi {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH namespace resolve_strategy { struct simplify { template static inline void apply(Geometry const& geometry, Geometry& out, Distance const& max_distance, Strategy const& strategy) { dispatch::simplify::apply(geometry, out, max_distance, strategy); } template static inline void apply(Geometry const& geometry, Geometry& out, Distance const& max_distance, default_strategy) { typedef typename point_type::type point_type; typedef typename strategy::distance::services::default_strategy < point_tag, segment_tag, point_type >::type ds_strategy_type; typedef strategy::simplify::douglas_peucker < point_type, ds_strategy_type > strategy_type; BOOST_CONCEPT_ASSERT( (concepts::SimplifyStrategy) ); apply(geometry, out, max_distance, strategy_type()); } }; struct simplify_insert { template < typename Geometry, typename OutputIterator, typename Distance, typename Strategy > static inline void apply(Geometry const& geometry, OutputIterator& out, Distance const& max_distance, Strategy const& strategy) { dispatch::simplify_insert::apply(geometry, out, max_distance, strategy); } template static inline void apply(Geometry const& geometry, OutputIterator& out, Distance const& max_distance, default_strategy) { typedef typename point_type::type point_type; typedef typename strategy::distance::services::default_strategy < point_tag, segment_tag, point_type >::type ds_strategy_type; typedef strategy::simplify::douglas_peucker < point_type, ds_strategy_type > strategy_type; BOOST_CONCEPT_ASSERT( (concepts::SimplifyStrategy) ); apply(geometry, out, max_distance, strategy_type()); } }; } // namespace resolve_strategy namespace resolve_variant { template struct simplify { template static inline void apply(Geometry const& geometry, Geometry& out, Distance const& max_distance, Strategy const& strategy) { resolve_strategy::simplify::apply(geometry, out, max_distance, strategy); } }; template struct simplify > { template struct visitor: boost::static_visitor { Distance const& m_max_distance; Strategy const& m_strategy; visitor(Distance const& max_distance, Strategy const& strategy) : m_max_distance(max_distance) , m_strategy(strategy) {} template void operator()(Geometry const& geometry, Geometry& out) const { simplify::apply(geometry, out, m_max_distance, m_strategy); } }; template static inline void apply(boost::variant const& geometry, boost::variant& out, Distance const& max_distance, Strategy const& strategy) { boost::apply_visitor( visitor(max_distance, strategy), geometry, out ); } }; } // namespace resolve_variant /*! \brief Simplify a geometry using a specified strategy \ingroup simplify \tparam Geometry \tparam_geometry \tparam Distance A numerical distance measure \tparam Strategy A type fulfilling a SimplifyStrategy concept \param strategy A strategy to calculate simplification \param geometry input geometry, to be simplified \param out output geometry, simplified version of the input geometry \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \param strategy simplify strategy to be used for simplification, might include point-distance strategy \image html svg_simplify_country.png "The image below presents the simplified country" \qbk{distinguish,with strategy} */ template inline void simplify(Geometry const& geometry, Geometry& out, Distance const& max_distance, Strategy const& strategy) { concepts::check(); geometry::clear(out); resolve_variant::simplify::apply(geometry, out, max_distance, strategy); } /*! \brief Simplify a geometry \ingroup simplify \tparam Geometry \tparam_geometry \tparam Distance \tparam_numeric \note This version of simplify simplifies a geometry using the default strategy (Douglas Peucker), \param geometry input geometry, to be simplified \param out output geometry, simplified version of the input geometry \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \qbk{[include reference/algorithms/simplify.qbk]} */ template inline void simplify(Geometry const& geometry, Geometry& out, Distance const& max_distance) { concepts::check(); geometry::simplify(geometry, out, max_distance, default_strategy()); } #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace simplify { /*! \brief Simplify a geometry, using an output iterator and a specified strategy \ingroup simplify \tparam Geometry \tparam_geometry \param geometry input geometry, to be simplified \param out output iterator, outputs all simplified points \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \param strategy simplify strategy to be used for simplification, might include point-distance strategy \qbk{distinguish,with strategy} \qbk{[include reference/algorithms/simplify.qbk]} */ template inline void simplify_insert(Geometry const& geometry, OutputIterator out, Distance const& max_distance, Strategy const& strategy) { concepts::check(); resolve_strategy::simplify_insert::apply(geometry, out, max_distance, strategy); } /*! \brief Simplify a geometry, using an output iterator \ingroup simplify \tparam Geometry \tparam_geometry \param geometry input geometry, to be simplified \param out output iterator, outputs all simplified points \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \qbk{[include reference/algorithms/simplify_insert.qbk]} */ template inline void simplify_insert(Geometry const& geometry, OutputIterator out, Distance const& max_distance) { // Concept: output point type = point type of input geometry concepts::check(); concepts::check::type>(); simplify_insert(geometry, out, max_distance, default_strategy()); } }} // namespace detail::simplify #endif // DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP