// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #define _USE_MATH_DEFINES #include #include #include "Recast.h" #include "RecastAssert.h" /// @par /// /// Allows the formation of walkable regions that will flow over low lying /// objects such as curbs, and up structures such as stairways. /// /// Two neighboring spans are walkable if: rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb /// /// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call /// #rcFilterLedgeSpans after calling this filter. /// /// @see rcHeightfield, rcConfig void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES); const int w = solid.width; const int h = solid.height; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { rcSpan* ps = 0; bool previousWalkable = false; unsigned char previousArea = RC_NULL_AREA; for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next) { const bool walkable = s->area != RC_NULL_AREA; // If current span is not walkable, but there is walkable // span just below it, mark the span above it walkable too. if (!walkable && previousWalkable) { if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb) s->area = previousArea; } // Copy walkable flag so that it cannot propagate // past multiple non-walkable objects. previousWalkable = walkable; previousArea = s->area; } } } } /// @par /// /// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb /// from the current span's maximum. /// This method removes the impact of the overestimation of conservative voxelization /// so the resulting mesh will not have regions hanging in the air over ledges. /// /// A span is a ledge if: rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb /// /// @see rcHeightfield, rcConfig void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb, rcHeightfield& solid) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER); const int w = solid.width; const int h = solid.height; const int MAX_HEIGHT = 0xffff; // Mark border spans. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next) { // Skip non walkable spans. if (s->area == RC_NULL_AREA) continue; const int bot = (int)(s->smax); const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT; // Find neighbours minimum height. int minh = MAX_HEIGHT; // Min and max height of accessible neighbours. int asmin = s->smax; int asmax = s->smax; for (int dir = 0; dir < 4; ++dir) { int dx = x + rcGetDirOffsetX(dir); int dy = y + rcGetDirOffsetY(dir); // Skip neighbours which are out of bounds. if (dx < 0 || dy < 0 || dx >= w || dy >= h) { minh = rcMin(minh, -walkableClimb - bot); continue; } // From minus infinity to the first span. rcSpan* ns = solid.spans[dx + dy*w]; int nbot = -walkableClimb; int ntop = ns ? (int)ns->smin : MAX_HEIGHT; // Skip neightbour if the gap between the spans is too small. if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight) minh = rcMin(minh, nbot - bot); // Rest of the spans. for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next) { nbot = (int)ns->smax; ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT; // Skip neightbour if the gap between the spans is too small. if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight) { minh = rcMin(minh, nbot - bot); // Find min/max accessible neighbour height. if (rcAbs(nbot - bot) <= walkableClimb) { if (nbot < asmin) asmin = nbot; if (nbot > asmax) asmax = nbot; } } } } // The current span is close to a ledge if the drop to any // neighbour span is less than the walkableClimb. if (minh < -walkableClimb) { s->area = RC_NULL_AREA; } // If the difference between all neighbours is too large, // we are at steep slope, mark the span as ledge. else if ((asmax - asmin) > walkableClimb) { s->area = RC_NULL_AREA; } } } } } /// @par /// /// For this filter, the clearance above the span is the distance from the span's /// maximum to the next higher span's minimum. (Same grid column.) /// /// @see rcHeightfield, rcConfig void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE); const int w = solid.width; const int h = solid.height; const int MAX_HEIGHT = 0xffff; // Remove walkable flag from spans which do not have enough // space above them for the agent to stand there. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next) { const int bot = (int)(s->smax); const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT; if ((top - bot) <= walkableHeight) s->area = RC_NULL_AREA; } } } }