// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #define _USE_MATH_DEFINES #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" struct rcEdge { unsigned short vert[2]; unsigned short polyEdge[2]; unsigned short poly[2]; }; static bool buildMeshAdjacency(unsigned short* polys, const int npolys, const int nverts, const int vertsPerPoly) { // Based on code by Eric Lengyel from: // http://www.terathon.com/code/edges.php int maxEdgeCount = npolys*vertsPerPoly; unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP); if (!firstEdge) return false; unsigned short* nextEdge = firstEdge + nverts; int edgeCount = 0; rcEdge* edges = (rcEdge*)rcAlloc(sizeof(rcEdge)*maxEdgeCount, RC_ALLOC_TEMP); if (!edges) { rcFree(firstEdge); return false; } for (int i = 0; i < nverts; i++) firstEdge[i] = RC_MESH_NULL_IDX; for (int i = 0; i < npolys; ++i) { unsigned short* t = &polys[i*vertsPerPoly*2]; for (int j = 0; j < vertsPerPoly; ++j) { if (t[j] == RC_MESH_NULL_IDX) break; unsigned short v0 = t[j]; unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1]; if (v0 < v1) { rcEdge& edge = edges[edgeCount]; edge.vert[0] = v0; edge.vert[1] = v1; edge.poly[0] = (unsigned short)i; edge.polyEdge[0] = (unsigned short)j; edge.poly[1] = (unsigned short)i; edge.polyEdge[1] = 0; // Insert edge nextEdge[edgeCount] = firstEdge[v0]; firstEdge[v0] = (unsigned short)edgeCount; edgeCount++; } } } for (int i = 0; i < npolys; ++i) { unsigned short* t = &polys[i*vertsPerPoly*2]; for (int j = 0; j < vertsPerPoly; ++j) { if (t[j] == RC_MESH_NULL_IDX) break; unsigned short v0 = t[j]; unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1]; if (v0 > v1) { for (unsigned short e = firstEdge[v1]; e != RC_MESH_NULL_IDX; e = nextEdge[e]) { rcEdge& edge = edges[e]; if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1]) { edge.poly[1] = (unsigned short)i; edge.polyEdge[1] = (unsigned short)j; break; } } } } } // Store adjacency for (int i = 0; i < edgeCount; ++i) { const rcEdge& e = edges[i]; if (e.poly[0] != e.poly[1]) { unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2]; unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2]; p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1]; p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0]; } } rcFree(firstEdge); rcFree(edges); return true; } static const int VERTEX_BUCKET_COUNT = (1<<12); inline int computeVertexHash(int x, int y, int z) { const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes const unsigned int h3 = 0xcb1ab31f; unsigned int n = h1 * x + h2 * y + h3 * z; return (int)(n & (VERTEX_BUCKET_COUNT-1)); } static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z, unsigned short* verts, int* firstVert, int* nextVert, int& nv) { int bucket = computeVertexHash(x, 0, z); int i = firstVert[bucket]; while (i != -1) { const unsigned short* v = &verts[i*3]; if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z) return (unsigned short)i; i = nextVert[i]; // next } // Could not find, create new. i = nv; nv++; unsigned short* v = &verts[i*3]; v[0] = x; v[1] = y; v[2] = z; nextVert[i] = firstVert[bucket]; firstVert[bucket] = i; return (unsigned short)i; } // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } inline int area2(const int* a, const int* b, const int* c) { return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); } // Exclusive or: true iff exactly one argument is true. // The arguments are negated to ensure that they are 0/1 // values. Then the bitwise Xor operator may apply. // (This idea is due to Michael Baldwin.) inline bool xorb(bool x, bool y) { return !x ^ !y; } // Returns true iff c is strictly to the left of the directed // line through a to b. inline bool left(const int* a, const int* b, const int* c) { return area2(a, b, c) < 0; } inline bool leftOn(const int* a, const int* b, const int* c) { return area2(a, b, c) <= 0; } inline bool collinear(const int* a, const int* b, const int* c) { return area2(a, b, c) == 0; } // Returns true iff ab properly intersects cd: they share // a point interior to both segments. The properness of the // intersection is ensured by using strict leftness. static bool intersectProp(const int* a, const int* b, const int* c, const int* d) { // Eliminate improper cases. if (collinear(a,b,c) || collinear(a,b,d) || collinear(c,d,a) || collinear(c,d,b)) return false; return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); } // Returns T iff (a,b,c) are collinear and point c lies // on the closed segement ab. static bool between(const int* a, const int* b, const int* c) { if (!collinear(a, b, c)) return false; // If ab not vertical, check betweenness on x; else on y. if (a[0] != b[0]) return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); else return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); } // Returns true iff segments ab and cd intersect, properly or improperly. static bool intersect(const int* a, const int* b, const int* c, const int* d) { if (intersectProp(a, b, c, d)) return true; else if (between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b)) return true; else return false; } static bool vequal(const int* a, const int* b) { return a[0] == b[0] && a[2] == b[2]; } // Returns T iff (v_i, v_j) is a proper internal *or* external // diagonal of P, *ignoring edges incident to v_i and v_j*. static bool diagonalie(int i, int j, int n, const int* verts, int* indices) { const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; // For each edge (k,k+1) of P for (int k = 0; k < n; k++) { int k1 = next(k, n); // Skip edges incident to i or j if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) { const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) continue; if (intersect(d0, d1, p0, p1)) return false; } } return true; } // Returns true iff the diagonal (i,j) is strictly internal to the // polygon P in the neighborhood of the i endpoint. static bool inCone(int i, int j, int n, const int* verts, int* indices) { const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. if (leftOn(pin1, pi, pi1)) return left(pi, pj, pin1) && left(pj, pi, pi1); // Assume (i-1,i,i+1) not collinear. // else P[i] is reflex. return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); } // Returns T iff (v_i, v_j) is a proper internal // diagonal of P. static bool diagonal(int i, int j, int n, const int* verts, int* indices) { return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices); } static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices) { const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; // For each edge (k,k+1) of P for (int k = 0; k < n; k++) { int k1 = next(k, n); // Skip edges incident to i or j if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) { const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) continue; if (intersectProp(d0, d1, p0, p1)) return false; } } return true; } static bool inConeLoose(int i, int j, int n, const int* verts, int* indices) { const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. if (leftOn(pin1, pi, pi1)) return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1); // Assume (i-1,i,i+1) not collinear. // else P[i] is reflex. return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); } static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices) { return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices); } static int triangulate(int n, const int* verts, int* indices, int* tris) { int ntris = 0; int* dst = tris; // The last bit of the index is used to indicate if the vertex can be removed. for (int i = 0; i < n; i++) { int i1 = next(i, n); int i2 = next(i1, n); if (diagonal(i, i2, n, verts, indices)) indices[i1] |= 0x80000000; } while (n > 3) { int minLen = -1; int mini = -1; for (int i = 0; i < n; i++) { int i1 = next(i, n); if (indices[i1] & 0x80000000) { const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4]; int dx = p2[0] - p0[0]; int dy = p2[2] - p0[2]; int len = dx*dx + dy*dy; if (minLen < 0 || len < minLen) { minLen = len; mini = i; } } } if (mini == -1) { // We might get here because the contour has overlapping segments, like this: // // A o-o=====o---o B // / |C D| \. // o o o o // : : : : // We'll try to recover by loosing up the inCone test a bit so that a diagonal // like A-B or C-D can be found and we can continue. minLen = -1; mini = -1; for (int i = 0; i < n; i++) { int i1 = next(i, n); int i2 = next(i1, n); if (diagonalLoose(i, i2, n, verts, indices)) { const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4]; int dx = p2[0] - p0[0]; int dy = p2[2] - p0[2]; int len = dx*dx + dy*dy; if (minLen < 0 || len < minLen) { minLen = len; mini = i; } } } if (mini == -1) { // The contour is messed up. This sometimes happens // if the contour simplification is too aggressive. return -ntris; } } int i = mini; int i1 = next(i, n); int i2 = next(i1, n); *dst++ = indices[i] & 0x0fffffff; *dst++ = indices[i1] & 0x0fffffff; *dst++ = indices[i2] & 0x0fffffff; ntris++; // Removes P[i1] by copying P[i+1]...P[n-1] left one index. n--; for (int k = i1; k < n; k++) indices[k] = indices[k+1]; if (i1 >= n) i1 = 0; i = prev(i1,n); // Update diagonal flags. if (diagonal(prev(i, n), i1, n, verts, indices)) indices[i] |= 0x80000000; else indices[i] &= 0x0fffffff; if (diagonal(i, next(i1, n), n, verts, indices)) indices[i1] |= 0x80000000; else indices[i1] &= 0x0fffffff; } // Append the remaining triangle. *dst++ = indices[0] & 0x0fffffff; *dst++ = indices[1] & 0x0fffffff; *dst++ = indices[2] & 0x0fffffff; ntris++; return ntris; } static int countPolyVerts(const unsigned short* p, const int nvp) { for (int i = 0; i < nvp; ++i) if (p[i] == RC_MESH_NULL_IDX) return i; return nvp; } inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c) { return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0; } static int getPolyMergeValue(unsigned short* pa, unsigned short* pb, const unsigned short* verts, int& ea, int& eb, const int nvp) { const int na = countPolyVerts(pa, nvp); const int nb = countPolyVerts(pb, nvp); // If the merged polygon would be too big, do not merge. if (na+nb-2 > nvp) return -1; // Check if the polygons share an edge. ea = -1; eb = -1; for (int i = 0; i < na; ++i) { unsigned short va0 = pa[i]; unsigned short va1 = pa[(i+1) % na]; if (va0 > va1) rcSwap(va0, va1); for (int j = 0; j < nb; ++j) { unsigned short vb0 = pb[j]; unsigned short vb1 = pb[(j+1) % nb]; if (vb0 > vb1) rcSwap(vb0, vb1); if (va0 == vb0 && va1 == vb1) { ea = i; eb = j; break; } } } // No common edge, cannot merge. if (ea == -1 || eb == -1) return -1; // Check to see if the merged polygon would be convex. unsigned short va, vb, vc; va = pa[(ea+na-1) % na]; vb = pa[ea]; vc = pb[(eb+2) % nb]; if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) return -1; va = pb[(eb+nb-1) % nb]; vb = pb[eb]; vc = pa[(ea+2) % na]; if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) return -1; va = pa[ea]; vb = pa[(ea+1)%na]; int dx = (int)verts[va*3+0] - (int)verts[vb*3+0]; int dy = (int)verts[va*3+2] - (int)verts[vb*3+2]; return dx*dx + dy*dy; } static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb, unsigned short* tmp, const int nvp) { const int na = countPolyVerts(pa, nvp); const int nb = countPolyVerts(pb, nvp); // Merge polygons. memset(tmp, 0xff, sizeof(unsigned short)*nvp); int n = 0; // Add pa for (int i = 0; i < na-1; ++i) tmp[n++] = pa[(ea+1+i) % na]; // Add pb for (int i = 0; i < nb-1; ++i) tmp[n++] = pb[(eb+1+i) % nb]; memcpy(pa, tmp, sizeof(unsigned short)*nvp); } static void pushFront(int v, int* arr, int& an) { an++; for (int i = an-1; i > 0; --i) arr[i] = arr[i-1]; arr[0] = v; } static void pushBack(int v, int* arr, int& an) { arr[an] = v; an++; } static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem) { const int nvp = mesh.nvp; // Count number of polygons to remove. int numRemovedVerts = 0; int numTouchedVerts = 0; int numRemainingEdges = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); int numRemoved = 0; int numVerts = 0; for (int j = 0; j < nv; ++j) { if (p[j] == rem) { numTouchedVerts++; numRemoved++; } numVerts++; } if (numRemoved) { numRemovedVerts += numRemoved; numRemainingEdges += numVerts-(numRemoved+1); } } // There would be too few edges remaining to create a polygon. // This can happen for example when a tip of a triangle is marked // as deletion, but there are no other polys that share the vertex. // In this case, the vertex should not be removed. if (numRemainingEdges <= 2) return false; // Find edges which share the removed vertex. const int maxEdges = numTouchedVerts*2; int nedges = 0; rcScopedDelete edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP)); if (!edges) { ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3); return false; } for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); // Collect edges which touches the removed vertex. for (int j = 0, k = nv-1; j < nv; k = j++) { if (p[j] == rem || p[k] == rem) { // Arrange edge so that a=rem. int a = p[j], b = p[k]; if (b == rem) rcSwap(a,b); // Check if the edge exists bool exists = false; for (int m = 0; m < nedges; ++m) { int* e = &edges[m*3]; if (e[1] == b) { // Exists, increment vertex share count. e[2]++; exists = true; } } // Add new edge. if (!exists) { int* e = &edges[nedges*3]; e[0] = a; e[1] = b; e[2] = 1; nedges++; } } } } // There should be no more than 2 open edges. // This catches the case that two non-adjacent polygons // share the removed vertex. In that case, do not remove the vertex. int numOpenEdges = 0; for (int i = 0; i < nedges; ++i) { if (edges[i*3+2] < 2) numOpenEdges++; } if (numOpenEdges > 2) return false; return true; } static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris) { const int nvp = mesh.nvp; // Count number of polygons to remove. int numRemovedVerts = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); for (int j = 0; j < nv; ++j) { if (p[j] == rem) numRemovedVerts++; } } int nedges = 0; rcScopedDelete edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP)); if (!edges) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4); return false; } int nhole = 0; rcScopedDelete hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); if (!hole) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp); return false; } int nhreg = 0; rcScopedDelete hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); if (!hreg) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp); return false; } int nharea = 0; rcScopedDelete harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); if (!harea) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp); return false; } for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); bool hasRem = false; for (int j = 0; j < nv; ++j) if (p[j] == rem) hasRem = true; if (hasRem) { // Collect edges which does not touch the removed vertex. for (int j = 0, k = nv-1; j < nv; k = j++) { if (p[j] != rem && p[k] != rem) { int* e = &edges[nedges*4]; e[0] = p[k]; e[1] = p[j]; e[2] = mesh.regs[i]; e[3] = mesh.areas[i]; nedges++; } } // Remove the polygon. unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2]; if (p != p2) memcpy(p,p2,sizeof(unsigned short)*nvp); memset(p+nvp,0xff,sizeof(unsigned short)*nvp); mesh.regs[i] = mesh.regs[mesh.npolys-1]; mesh.areas[i] = mesh.areas[mesh.npolys-1]; mesh.npolys--; --i; } } // Remove vertex. for (int i = (int)rem; i < mesh.nverts - 1; ++i) { mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0]; mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1]; mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2]; } mesh.nverts--; // Adjust indices to match the removed vertex layout. for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); for (int j = 0; j < nv; ++j) if (p[j] > rem) p[j]--; } for (int i = 0; i < nedges; ++i) { if (edges[i*4+0] > rem) edges[i*4+0]--; if (edges[i*4+1] > rem) edges[i*4+1]--; } if (nedges == 0) return true; // Start with one vertex, keep appending connected // segments to the start and end of the hole. pushBack(edges[0], hole, nhole); pushBack(edges[2], hreg, nhreg); pushBack(edges[3], harea, nharea); while (nedges) { bool match = false; for (int i = 0; i < nedges; ++i) { const int ea = edges[i*4+0]; const int eb = edges[i*4+1]; const int r = edges[i*4+2]; const int a = edges[i*4+3]; bool add = false; if (hole[0] == eb) { // The segment matches the beginning of the hole boundary. pushFront(ea, hole, nhole); pushFront(r, hreg, nhreg); pushFront(a, harea, nharea); add = true; } else if (hole[nhole-1] == ea) { // The segment matches the end of the hole boundary. pushBack(eb, hole, nhole); pushBack(r, hreg, nhreg); pushBack(a, harea, nharea); add = true; } if (add) { // The edge segment was added, remove it. edges[i*4+0] = edges[(nedges-1)*4+0]; edges[i*4+1] = edges[(nedges-1)*4+1]; edges[i*4+2] = edges[(nedges-1)*4+2]; edges[i*4+3] = edges[(nedges-1)*4+3]; --nedges; match = true; --i; } } if (!match) break; } rcScopedDelete tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP)); if (!tris) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3); return false; } rcScopedDelete tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP)); if (!tverts) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4); return false; } rcScopedDelete thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP)); if (!thole) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole); return false; } // Generate temp vertex array for triangulation. for (int i = 0; i < nhole; ++i) { const int pi = hole[i]; tverts[i*4+0] = mesh.verts[pi*3+0]; tverts[i*4+1] = mesh.verts[pi*3+1]; tverts[i*4+2] = mesh.verts[pi*3+2]; tverts[i*4+3] = 0; thole[i] = i; } // Triangulate the hole. int ntris = triangulate(nhole, &tverts[0], &thole[0], tris); if (ntris < 0) { ntris = -ntris; ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results."); } // Merge the hole triangles back to polygons. rcScopedDelete polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP)); if (!polys) { ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp); return false; } rcScopedDelete pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP)); if (!pregs) { ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris); return false; } rcScopedDelete pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP)); if (!pareas) { ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris); return false; } unsigned short* tmpPoly = &polys[ntris*nvp]; // Build initial polygons. int npolys = 0; memset(polys, 0xff, ntris*nvp*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { int* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*nvp+0] = (unsigned short)hole[t[0]]; polys[npolys*nvp+1] = (unsigned short)hole[t[1]]; polys[npolys*nvp+2] = (unsigned short)hole[t[2]]; // If this polygon covers multiple region types then // mark it as such if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]]) pregs[npolys] = RC_MULTIPLE_REGS; else pregs[npolys] = (unsigned short)hreg[t[0]]; pareas[npolys] = (unsigned char)harea[t[0]]; npolys++; } } if (!npolys) return true; // Merge polygons. if (nvp > 3) { for (;;) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*nvp]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*nvp]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*nvp]; unsigned short* pb = &polys[bestPb*nvp]; mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp); if (pregs[bestPa] != pregs[bestPb]) pregs[bestPa] = RC_MULTIPLE_REGS; unsigned short* last = &polys[(npolys-1)*nvp]; if (pb != last) memcpy(pb, last, sizeof(unsigned short)*nvp); pregs[bestPb] = pregs[npolys-1]; pareas[bestPb] = pareas[npolys-1]; npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int i = 0; i < npolys; ++i) { if (mesh.npolys >= maxTris) break; unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; memset(p,0xff,sizeof(unsigned short)*nvp*2); for (int j = 0; j < nvp; ++j) p[j] = polys[i*nvp+j]; mesh.regs[mesh.npolys] = pregs[i]; mesh.areas[mesh.npolys] = pareas[i]; mesh.npolys++; if (mesh.npolys > maxTris) { ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris); return false; } } return true; } /// @par /// /// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper /// limit must be retricted to <= #DT_VERTS_PER_POLYGON. /// /// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH); rcVcopy(mesh.bmin, cset.bmin); rcVcopy(mesh.bmax, cset.bmax); mesh.cs = cset.cs; mesh.ch = cset.ch; mesh.borderSize = cset.borderSize; mesh.maxEdgeError = cset.maxError; int maxVertices = 0; int maxTris = 0; int maxVertsPerCont = 0; for (int i = 0; i < cset.nconts; ++i) { // Skip null contours. if (cset.conts[i].nverts < 3) continue; maxVertices += cset.conts[i].nverts; maxTris += cset.conts[i].nverts - 2; maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts); } if (maxVertices >= 0xfffe) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices); return false; } rcScopedDelete vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP)); if (!vflags) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices); return false; } memset(vflags, 0, maxVertices); mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM); if (!mesh.verts) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); return false; } mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM); if (!mesh.polys) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2); return false; } mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM); if (!mesh.regs) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris); return false; } mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM); if (!mesh.areas) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris); return false; } mesh.nverts = 0; mesh.npolys = 0; mesh.nvp = nvp; mesh.maxpolys = maxTris; memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3); memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2); memset(mesh.regs, 0, sizeof(unsigned short)*maxTris); memset(mesh.areas, 0, sizeof(unsigned char)*maxTris); rcScopedDelete nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP)); if (!nextVert) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices); return false; } memset(nextVert, 0, sizeof(int)*maxVertices); rcScopedDelete firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP)); if (!firstVert) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); return false; } for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) firstVert[i] = -1; rcScopedDelete indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP)); if (!indices) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont); return false; } rcScopedDelete tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP)); if (!tris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3); return false; } rcScopedDelete polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP)); if (!polys) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp); return false; } unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp]; for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // Skip null contours. if (cont.nverts < 3) continue; // Triangulate contour for (int j = 0; j < cont.nverts; ++j) indices[j] = j; int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]); if (ntris <= 0) { // Bad triangulation, should not happen. /* printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]); printf("\tconst float cs = %ff;\n", cset.cs); printf("\tconst float ch = %ff;\n", cset.ch); printf("\tconst int verts[] = {\n"); for (int k = 0; k < cont.nverts; ++k) { const int* v = &cont.verts[k*4]; printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]); } printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/ ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i); ntris = -ntris; } // Add and merge vertices. for (int j = 0; j < cont.nverts; ++j) { const int* v = &cont.verts[j*4]; indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2], mesh.verts, firstVert, nextVert, mesh.nverts); if (v[3] & RC_BORDER_VERTEX) { // This vertex should be removed. vflags[indices[j]] = 1; } } // Build initial polygons. int npolys = 0; memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { int* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*nvp+0] = (unsigned short)indices[t[0]]; polys[npolys*nvp+1] = (unsigned short)indices[t[1]]; polys[npolys*nvp+2] = (unsigned short)indices[t[2]]; npolys++; } } if (!npolys) continue; // Merge polygons. if (nvp > 3) { for(;;) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*nvp]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*nvp]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*nvp]; unsigned short* pb = &polys[bestPb*nvp]; mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp); unsigned short* lastPoly = &polys[(npolys-1)*nvp]; if (pb != lastPoly) memcpy(pb, lastPoly, sizeof(unsigned short)*nvp); npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int j = 0; j < npolys; ++j) { unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; unsigned short* q = &polys[j*nvp]; for (int k = 0; k < nvp; ++k) p[k] = q[k]; mesh.regs[mesh.npolys] = cont.reg; mesh.areas[mesh.npolys] = cont.area; mesh.npolys++; if (mesh.npolys > maxTris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris); return false; } } } // Remove edge vertices. for (int i = 0; i < mesh.nverts; ++i) { if (vflags[i]) { if (!canRemoveVertex(ctx, mesh, (unsigned short)i)) continue; if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris)) { // Failed to remove vertex ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i); return false; } // Remove vertex // Note: mesh.nverts is already decremented inside removeVertex()! // Fixup vertex flags for (int j = i; j < mesh.nverts; ++j) vflags[j] = vflags[j+1]; --i; } } // Calculate adjacency. if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp)) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed."); return false; } // Find portal edges if (mesh.borderSize > 0) { const int w = cset.width; const int h = cset.height; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*2*nvp]; for (int j = 0; j < nvp; ++j) { if (p[j] == RC_MESH_NULL_IDX) break; // Skip connected edges. if (p[nvp+j] != RC_MESH_NULL_IDX) continue; int nj = j+1; if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0; const unsigned short* va = &mesh.verts[p[j]*3]; const unsigned short* vb = &mesh.verts[p[nj]*3]; if ((int)va[0] == 0 && (int)vb[0] == 0) p[nvp+j] = 0x8000 | 0; else if ((int)va[2] == h && (int)vb[2] == h) p[nvp+j] = 0x8000 | 1; else if ((int)va[0] == w && (int)vb[0] == w) p[nvp+j] = 0x8000 | 2; else if ((int)va[2] == 0 && (int)vb[2] == 0) p[nvp+j] = 0x8000 | 3; } } } // Just allocate the mesh flags array. The user is resposible to fill it. mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM); if (!mesh.flags) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys); return false; } memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys); if (mesh.nverts > 0xffff) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); } if (mesh.npolys > 0xffff) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); } return true; } /// @see rcAllocPolyMesh, rcPolyMesh bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh) { rcAssert(ctx); if (!nmeshes || !meshes) return true; rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH); mesh.nvp = meshes[0]->nvp; mesh.cs = meshes[0]->cs; mesh.ch = meshes[0]->ch; rcVcopy(mesh.bmin, meshes[0]->bmin); rcVcopy(mesh.bmax, meshes[0]->bmax); int maxVerts = 0; int maxPolys = 0; int maxVertsPerMesh = 0; for (int i = 0; i < nmeshes; ++i) { rcVmin(mesh.bmin, meshes[i]->bmin); rcVmax(mesh.bmax, meshes[i]->bmax); maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts); maxVerts += meshes[i]->nverts; maxPolys += meshes[i]->npolys; } mesh.nverts = 0; mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM); if (!mesh.verts) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3); return false; } mesh.npolys = 0; mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM); if (!mesh.polys) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp); return false; } memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp); mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM); if (!mesh.regs) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys); return false; } memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys); mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM); if (!mesh.areas) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys); return false; } memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys); mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM); if (!mesh.flags) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys); return false; } memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys); rcScopedDelete nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP)); if (!nextVert) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts); return false; } memset(nextVert, 0, sizeof(int)*maxVerts); rcScopedDelete firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP)); if (!firstVert) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); return false; } for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) firstVert[i] = -1; rcScopedDelete vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM)); if (!vremap) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh); return false; } memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh); for (int i = 0; i < nmeshes; ++i) { const rcPolyMesh* pmesh = meshes[i]; const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f); const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f); bool isMinX = (ox == 0); bool isMinZ = (oz == 0); bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0; bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0; bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ); for (int j = 0; j < pmesh->nverts; ++j) { unsigned short* v = &pmesh->verts[j*3]; vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz, mesh.verts, firstVert, nextVert, mesh.nverts); } for (int j = 0; j < pmesh->npolys; ++j) { unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp]; unsigned short* src = &pmesh->polys[j*2*mesh.nvp]; mesh.regs[mesh.npolys] = pmesh->regs[j]; mesh.areas[mesh.npolys] = pmesh->areas[j]; mesh.flags[mesh.npolys] = pmesh->flags[j]; mesh.npolys++; for (int k = 0; k < mesh.nvp; ++k) { if (src[k] == RC_MESH_NULL_IDX) break; tgt[k] = vremap[src[k]]; } if (isOnBorder) { for (int k = mesh.nvp; k < mesh.nvp * 2; ++k) { if (src[k] & 0x8000 && src[k] != 0xffff) { unsigned short dir = src[k] & 0xf; switch (dir) { case 0: // Portal x- if (isMinX) tgt[k] = src[k]; break; case 1: // Portal z+ if (isMaxZ) tgt[k] = src[k]; break; case 2: // Portal x+ if (isMaxX) tgt[k] = src[k]; break; case 3: // Portal z- if (isMinZ) tgt[k] = src[k]; break; } } } } } } // Calculate adjacency. if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp)) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed."); return false; } if (mesh.nverts > 0xffff) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); } if (mesh.npolys > 0xffff) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); } return true; } bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst) { rcAssert(ctx); // Destination must be empty. rcAssert(dst.verts == 0); rcAssert(dst.polys == 0); rcAssert(dst.regs == 0); rcAssert(dst.areas == 0); rcAssert(dst.flags == 0); dst.nverts = src.nverts; dst.npolys = src.npolys; dst.maxpolys = src.npolys; dst.nvp = src.nvp; rcVcopy(dst.bmin, src.bmin); rcVcopy(dst.bmax, src.bmax); dst.cs = src.cs; dst.ch = src.ch; dst.borderSize = src.borderSize; dst.maxEdgeError = src.maxEdgeError; dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM); if (!dst.verts) { ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3); return false; } memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3); dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM); if (!dst.polys) { ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp); return false; } memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp); dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM); if (!dst.regs) { ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys); return false; } memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys); dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM); if (!dst.areas) { ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys); return false; } memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys); dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM); if (!dst.flags) { ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys); return false; } memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys); return true; }