// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" namespace { struct LevelStackEntry { LevelStackEntry(int x_, int y_, int index_) : x(x_), y(y_), index(index_) {} int x; int y; int index; }; } // namespace static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist) { const int w = chf.width; const int h = chf.height; // Init distance and points. for (int i = 0; i < chf.spanCount; ++i) src[i] = 0xffff; // Mark boundary cells. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; const unsigned char area = chf.areas[i]; int nc = 0; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); if (area == chf.areas[ai]) nc++; } } if (nc != 4) src[i] = 0; } } } // Pass 1 for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (rcGetCon(s, 0) != RC_NOT_CONNECTED) { // (-1,0) const int ax = x + rcGetDirOffsetX(0); const int ay = y + rcGetDirOffsetY(0); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (-1,-1) if (rcGetCon(as, 3) != RC_NOT_CONNECTED) { const int aax = ax + rcGetDirOffsetX(3); const int aay = ay + rcGetDirOffsetY(3); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } if (rcGetCon(s, 3) != RC_NOT_CONNECTED) { // (0,-1) const int ax = x + rcGetDirOffsetX(3); const int ay = y + rcGetDirOffsetY(3); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (1,-1) if (rcGetCon(as, 2) != RC_NOT_CONNECTED) { const int aax = ax + rcGetDirOffsetX(2); const int aay = ay + rcGetDirOffsetY(2); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } } } } // Pass 2 for (int y = h-1; y >= 0; --y) { for (int x = w-1; x >= 0; --x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (rcGetCon(s, 2) != RC_NOT_CONNECTED) { // (1,0) const int ax = x + rcGetDirOffsetX(2); const int ay = y + rcGetDirOffsetY(2); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (1,1) if (rcGetCon(as, 1) != RC_NOT_CONNECTED) { const int aax = ax + rcGetDirOffsetX(1); const int aay = ay + rcGetDirOffsetY(1); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } if (rcGetCon(s, 1) != RC_NOT_CONNECTED) { // (0,1) const int ax = x + rcGetDirOffsetX(1); const int ay = y + rcGetDirOffsetY(1); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (-1,1) if (rcGetCon(as, 0) != RC_NOT_CONNECTED) { const int aax = ax + rcGetDirOffsetX(0); const int aay = ay + rcGetDirOffsetY(0); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } } } } maxDist = 0; for (int i = 0; i < chf.spanCount; ++i) maxDist = rcMax(src[i], maxDist); } static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr, unsigned short* src, unsigned short* dst) { const int w = chf.width; const int h = chf.height; thr *= 2; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; const unsigned short cd = src[i]; if (cd <= thr) { dst[i] = cd; continue; } int d = (int)cd; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); d += (int)src[ai]; const rcCompactSpan& as = chf.spans[ai]; const int dir2 = (dir+1) & 0x3; if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) { const int ax2 = ax + rcGetDirOffsetX(dir2); const int ay2 = ay + rcGetDirOffsetY(dir2); const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); d += (int)src[ai2]; } else { d += cd; } } else { d += cd*2; } } dst[i] = (unsigned short)((d+5)/9); } } } return dst; } static bool floodRegion(int x, int y, int i, unsigned short level, unsigned short r, rcCompactHeightfield& chf, unsigned short* srcReg, unsigned short* srcDist, rcTempVector& stack) { const int w = chf.width; const unsigned char area = chf.areas[i]; // Flood fill mark region. stack.clear(); stack.push_back(LevelStackEntry(x, y, i)); srcReg[i] = r; srcDist[i] = 0; unsigned short lev = level >= 2 ? level-2 : 0; int count = 0; while (stack.size() > 0) { LevelStackEntry& back = stack.back(); int cx = back.x; int cy = back.y; int ci = back.index; stack.pop_back(); const rcCompactSpan& cs = chf.spans[ci]; // Check if any of the neighbours already have a valid region set. unsigned short ar = 0; for (int dir = 0; dir < 4; ++dir) { // 8 connected if (rcGetCon(cs, dir) != RC_NOT_CONNECTED) { const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); if (chf.areas[ai] != area) continue; unsigned short nr = srcReg[ai]; if (nr & RC_BORDER_REG) // Do not take borders into account. continue; if (nr != 0 && nr != r) { ar = nr; break; } const rcCompactSpan& as = chf.spans[ai]; const int dir2 = (dir+1) & 0x3; if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) { const int ax2 = ax + rcGetDirOffsetX(dir2); const int ay2 = ay + rcGetDirOffsetY(dir2); const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); if (chf.areas[ai2] != area) continue; unsigned short nr2 = srcReg[ai2]; if (nr2 != 0 && nr2 != r) { ar = nr2; break; } } } } if (ar != 0) { srcReg[ci] = 0; continue; } count++; // Expand neighbours. for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(cs, dir) != RC_NOT_CONNECTED) { const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); if (chf.areas[ai] != area) continue; if (chf.dist[ai] >= lev && srcReg[ai] == 0) { srcReg[ai] = r; srcDist[ai] = 0; stack.push_back(LevelStackEntry(ax, ay, ai)); } } } } return count > 0; } // Struct to keep track of entries in the region table that have been changed. struct DirtyEntry { DirtyEntry(int index_, unsigned short region_, unsigned short distance2_) : index(index_), region(region_), distance2(distance2_) {} int index; unsigned short region; unsigned short distance2; }; static void expandRegions(int maxIter, unsigned short level, rcCompactHeightfield& chf, unsigned short* srcReg, unsigned short* srcDist, rcTempVector& stack, bool fillStack) { const int w = chf.width; const int h = chf.height; if (fillStack) { // Find cells revealed by the raised level. stack.clear(); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA) { stack.push_back(LevelStackEntry(x, y, i)); } } } } } else // use cells in the input stack { // mark all cells which already have a region for (int j=0; j dirtyEntries; int iter = 0; while (stack.size() > 0) { int failed = 0; dirtyEntries.clear(); for (int j = 0; j < stack.size(); j++) { int x = stack[j].x; int y = stack[j].y; int i = stack[j].index; if (i < 0) { failed++; continue; } unsigned short r = srcReg[i]; unsigned short d2 = 0xffff; const unsigned char area = chf.areas[i]; const rcCompactSpan& s = chf.spans[i]; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) == RC_NOT_CONNECTED) continue; const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); if (chf.areas[ai] != area) continue; if (srcReg[ai] > 0 && (srcReg[ai] & RC_BORDER_REG) == 0) { if ((int)srcDist[ai]+2 < (int)d2) { r = srcReg[ai]; d2 = srcDist[ai]+2; } } } if (r) { stack[j].index = -1; // mark as used dirtyEntries.push_back(DirtyEntry(i, r, d2)); } else { failed++; } } // Copy entries that differ between src and dst to keep them in sync. for (int i = 0; i < dirtyEntries.size(); i++) { int idx = dirtyEntries[i].index; srcReg[idx] = dirtyEntries[i].region; srcDist[idx] = dirtyEntries[i].distance2; } if (failed == stack.size()) break; if (level > 0) { ++iter; if (iter >= maxIter) break; } } } static void sortCellsByLevel(unsigned short startLevel, rcCompactHeightfield& chf, const unsigned short* srcReg, unsigned int nbStacks, rcTempVector* stacks, unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift { const int w = chf.width; const int h = chf.height; startLevel = startLevel >> loglevelsPerStack; for (unsigned int j=0; j> loglevelsPerStack; int sId = startLevel - level; if (sId >= (int)nbStacks) continue; if (sId < 0) sId = 0; stacks[sId].push_back(LevelStackEntry(x, y, i)); } } } } static void appendStacks(const rcTempVector& srcStack, rcTempVector& dstStack, const unsigned short* srcReg) { for (int j=0; j 1; ) { int ni = (i+1) % reg.connections.size(); if (reg.connections[i] == reg.connections[ni]) { // Remove duplicate for (int j = i; j < reg.connections.size()-1; ++j) reg.connections[j] = reg.connections[j+1]; reg.connections.pop(); } else ++i; } } static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId) { bool neiChanged = false; for (int i = 0; i < reg.connections.size(); ++i) { if (reg.connections[i] == oldId) { reg.connections[i] = newId; neiChanged = true; } } for (int i = 0; i < reg.floors.size(); ++i) { if (reg.floors[i] == oldId) reg.floors[i] = newId; } if (neiChanged) removeAdjacentNeighbours(reg); } static bool canMergeWithRegion(const rcRegion& rega, const rcRegion& regb) { if (rega.areaType != regb.areaType) return false; int n = 0; for (int i = 0; i < rega.connections.size(); ++i) { if (rega.connections[i] == regb.id) n++; } if (n > 1) return false; for (int i = 0; i < rega.floors.size(); ++i) { if (rega.floors[i] == regb.id) return false; } return true; } static void addUniqueFloorRegion(rcRegion& reg, int n) { for (int i = 0; i < reg.floors.size(); ++i) if (reg.floors[i] == n) return; reg.floors.push(n); } static bool mergeRegions(rcRegion& rega, rcRegion& regb) { unsigned short aid = rega.id; unsigned short bid = regb.id; // Duplicate current neighbourhood. rcIntArray acon; acon.resize(rega.connections.size()); for (int i = 0; i < rega.connections.size(); ++i) acon[i] = rega.connections[i]; rcIntArray& bcon = regb.connections; // Find insertion point on A. int insa = -1; for (int i = 0; i < acon.size(); ++i) { if (acon[i] == bid) { insa = i; break; } } if (insa == -1) return false; // Find insertion point on B. int insb = -1; for (int i = 0; i < bcon.size(); ++i) { if (bcon[i] == aid) { insb = i; break; } } if (insb == -1) return false; // Merge neighbours. rega.connections.resize(0); for (int i = 0, ni = acon.size(); i < ni-1; ++i) rega.connections.push(acon[(insa+1+i) % ni]); for (int i = 0, ni = bcon.size(); i < ni-1; ++i) rega.connections.push(bcon[(insb+1+i) % ni]); removeAdjacentNeighbours(rega); for (int j = 0; j < regb.floors.size(); ++j) addUniqueFloorRegion(rega, regb.floors[j]); rega.spanCount += regb.spanCount; regb.spanCount = 0; regb.connections.resize(0); return true; } static bool isRegionConnectedToBorder(const rcRegion& reg) { // Region is connected to border if // one of the neighbours is null id. for (int i = 0; i < reg.connections.size(); ++i) { if (reg.connections[i] == 0) return true; } return false; } static bool isSolidEdge(rcCompactHeightfield& chf, const unsigned short* srcReg, int x, int y, int i, int dir) { const rcCompactSpan& s = chf.spans[i]; unsigned short r = 0; if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); r = srcReg[ai]; } if (r == srcReg[i]) return false; return true; } static void walkContour(int x, int y, int i, int dir, rcCompactHeightfield& chf, const unsigned short* srcReg, rcIntArray& cont) { int startDir = dir; int starti = i; const rcCompactSpan& ss = chf.spans[i]; unsigned short curReg = 0; if (rcGetCon(ss, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir); curReg = srcReg[ai]; } cont.push(curReg); int iter = 0; while (++iter < 40000) { const rcCompactSpan& s = chf.spans[i]; if (isSolidEdge(chf, srcReg, x, y, i, dir)) { // Choose the edge corner unsigned short r = 0; if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); r = srcReg[ai]; } if (r != curReg) { curReg = r; cont.push(curReg); } dir = (dir+1) & 0x3; // Rotate CW } else { int ni = -1; const int nx = x + rcGetDirOffsetX(dir); const int ny = y + rcGetDirOffsetY(dir); if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; ni = (int)nc.index + rcGetCon(s, dir); } if (ni == -1) { // Should not happen. return; } x = nx; y = ny; i = ni; dir = (dir+3) & 0x3; // Rotate CCW } if (starti == i && startDir == dir) { break; } } // Remove adjacent duplicates. if (cont.size() > 1) { for (int j = 0; j < cont.size(); ) { int nj = (j+1) % cont.size(); if (cont[j] == cont[nj]) { for (int k = j; k < cont.size()-1; ++k) cont[k] = cont[k+1]; cont.pop(); } else ++j; } } } static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize, unsigned short& maxRegionId, rcCompactHeightfield& chf, unsigned short* srcReg, rcIntArray& overlaps) { const int w = chf.width; const int h = chf.height; const int nreg = maxRegionId+1; rcTempVector regions; if (!regions.reserve(nreg)) { ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg); return false; } // Construct regions for (int i = 0; i < nreg; ++i) regions.push_back(rcRegion((unsigned short) i)); // Find edge of a region and find connections around the contour. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { unsigned short r = srcReg[i]; if (r == 0 || r >= nreg) continue; rcRegion& reg = regions[r]; reg.spanCount++; // Update floors. for (int j = (int)c.index; j < ni; ++j) { if (i == j) continue; unsigned short floorId = srcReg[j]; if (floorId == 0 || floorId >= nreg) continue; if (floorId == r) reg.overlap = true; addUniqueFloorRegion(reg, floorId); } // Have found contour if (reg.connections.size() > 0) continue; reg.areaType = chf.areas[i]; // Check if this cell is next to a border. int ndir = -1; for (int dir = 0; dir < 4; ++dir) { if (isSolidEdge(chf, srcReg, x, y, i, dir)) { ndir = dir; break; } } if (ndir != -1) { // The cell is at border. // Walk around the contour to find all the neighbours. walkContour(x, y, i, ndir, chf, srcReg, reg.connections); } } } } // Remove too small regions. rcIntArray stack(32); rcIntArray trace(32); for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.spanCount == 0) continue; if (reg.visited) continue; // Count the total size of all the connected regions. // Also keep track of the regions connects to a tile border. bool connectsToBorder = false; int spanCount = 0; stack.resize(0); trace.resize(0); reg.visited = true; stack.push(i); while (stack.size()) { // Pop int ri = stack.pop(); rcRegion& creg = regions[ri]; spanCount += creg.spanCount; trace.push(ri); for (int j = 0; j < creg.connections.size(); ++j) { if (creg.connections[j] & RC_BORDER_REG) { connectsToBorder = true; continue; } rcRegion& neireg = regions[creg.connections[j]]; if (neireg.visited) continue; if (neireg.id == 0 || (neireg.id & RC_BORDER_REG)) continue; // Visit stack.push(neireg.id); neireg.visited = true; } } // If the accumulated regions size is too small, remove it. // Do not remove areas which connect to tile borders // as their size cannot be estimated correctly and removing them // can potentially remove necessary areas. if (spanCount < minRegionArea && !connectsToBorder) { // Kill all visited regions. for (int j = 0; j < trace.size(); ++j) { regions[trace[j]].spanCount = 0; regions[trace[j]].id = 0; } } } // Merge too small regions to neighbour regions. int mergeCount = 0 ; do { mergeCount = 0; for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.overlap) continue; if (reg.spanCount == 0) continue; // Check to see if the region should be merged. if (reg.spanCount > mergeRegionSize && isRegionConnectedToBorder(reg)) continue; // Small region with more than 1 connection. // Or region which is not connected to a border at all. // Find smallest neighbour region that connects to this one. int smallest = 0xfffffff; unsigned short mergeId = reg.id; for (int j = 0; j < reg.connections.size(); ++j) { if (reg.connections[j] & RC_BORDER_REG) continue; rcRegion& mreg = regions[reg.connections[j]]; if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue; if (mreg.spanCount < smallest && canMergeWithRegion(reg, mreg) && canMergeWithRegion(mreg, reg)) { smallest = mreg.spanCount; mergeId = mreg.id; } } // Found new id. if (mergeId != reg.id) { unsigned short oldId = reg.id; rcRegion& target = regions[mergeId]; // Merge neighbours. if (mergeRegions(target, reg)) { // Fixup regions pointing to current region. for (int j = 0; j < nreg; ++j) { if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue; // If another region was already merged into current region // change the nid of the previous region too. if (regions[j].id == oldId) regions[j].id = mergeId; // Replace the current region with the new one if the // current regions is neighbour. replaceNeighbour(regions[j], oldId, mergeId); } mergeCount++; } } } } while (mergeCount > 0); // Compress region Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = false; if (regions[i].id == 0) continue; // Skip nil regions. if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. regions[i].remap = true; } unsigned short regIdGen = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].id; unsigned short newId = ++regIdGen; for (int j = i; j < nreg; ++j) { if (regions[j].id == oldId) { regions[j].id = newId; regions[j].remap = false; } } } maxRegionId = regIdGen; // Remap regions. for (int i = 0; i < chf.spanCount; ++i) { if ((srcReg[i] & RC_BORDER_REG) == 0) srcReg[i] = regions[srcReg[i]].id; } // Return regions that we found to be overlapping. for (int i = 0; i < nreg; ++i) if (regions[i].overlap) overlaps.push(regions[i].id); return true; } static void addUniqueConnection(rcRegion& reg, int n) { for (int i = 0; i < reg.connections.size(); ++i) if (reg.connections[i] == n) return; reg.connections.push(n); } static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea, unsigned short& maxRegionId, rcCompactHeightfield& chf, unsigned short* srcReg) { const int w = chf.width; const int h = chf.height; const int nreg = maxRegionId+1; rcTempVector regions; // Construct regions if (!regions.reserve(nreg)) { ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg); return false; } for (int i = 0; i < nreg; ++i) regions.push_back(rcRegion((unsigned short) i)); // Find region neighbours and overlapping regions. rcIntArray lregs(32); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; lregs.resize(0); for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; const unsigned short ri = srcReg[i]; if (ri == 0 || ri >= nreg) continue; rcRegion& reg = regions[ri]; reg.spanCount++; reg.ymin = rcMin(reg.ymin, s.y); reg.ymax = rcMax(reg.ymax, s.y); // Collect all region layers. lregs.push(ri); // Update neighbours for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); const unsigned short rai = srcReg[ai]; if (rai > 0 && rai < nreg && rai != ri) addUniqueConnection(reg, rai); if (rai & RC_BORDER_REG) reg.connectsToBorder = true; } } } // Update overlapping regions. for (int i = 0; i < lregs.size()-1; ++i) { for (int j = i+1; j < lregs.size(); ++j) { if (lregs[i] != lregs[j]) { rcRegion& ri = regions[lregs[i]]; rcRegion& rj = regions[lregs[j]]; addUniqueFloorRegion(ri, lregs[j]); addUniqueFloorRegion(rj, lregs[i]); } } } } } // Create 2D layers from regions. unsigned short layerId = 1; for (int i = 0; i < nreg; ++i) regions[i].id = 0; // Merge montone regions to create non-overlapping areas. rcIntArray stack(32); for (int i = 1; i < nreg; ++i) { rcRegion& root = regions[i]; // Skip already visited. if (root.id != 0) continue; // Start search. root.id = layerId; stack.resize(0); stack.push(i); while (stack.size() > 0) { // Pop front rcRegion& reg = regions[stack[0]]; for (int j = 0; j < stack.size()-1; ++j) stack[j] = stack[j+1]; stack.resize(stack.size()-1); const int ncons = (int)reg.connections.size(); for (int j = 0; j < ncons; ++j) { const int nei = reg.connections[j]; rcRegion& regn = regions[nei]; // Skip already visited. if (regn.id != 0) continue; // Skip if the neighbour is overlapping root region. bool overlap = false; for (int k = 0; k < root.floors.size(); k++) { if (root.floors[k] == nei) { overlap = true; break; } } if (overlap) continue; // Deepen stack.push(nei); // Mark layer id regn.id = layerId; // Merge current layers to root. for (int k = 0; k < regn.floors.size(); ++k) addUniqueFloorRegion(root, regn.floors[k]); root.ymin = rcMin(root.ymin, regn.ymin); root.ymax = rcMax(root.ymax, regn.ymax); root.spanCount += regn.spanCount; regn.spanCount = 0; root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder; } } layerId++; } // Remove small regions for (int i = 0; i < nreg; ++i) { if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder) { unsigned short reg = regions[i].id; for (int j = 0; j < nreg; ++j) if (regions[j].id == reg) regions[j].id = 0; } } // Compress region Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = false; if (regions[i].id == 0) continue; // Skip nil regions. if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. regions[i].remap = true; } unsigned short regIdGen = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].id; unsigned short newId = ++regIdGen; for (int j = i; j < nreg; ++j) { if (regions[j].id == oldId) { regions[j].id = newId; regions[j].remap = false; } } } maxRegionId = regIdGen; // Remap regions. for (int i = 0; i < chf.spanCount; ++i) { if ((srcReg[i] & RC_BORDER_REG) == 0) srcReg[i] = regions[srcReg[i]].id; } return true; } /// @par /// /// This is usually the second to the last step in creating a fully built /// compact heightfield. This step is required before regions are built /// using #rcBuildRegions or #rcBuildRegionsMonotone. /// /// After this step, the distance data is available via the rcCompactHeightfield::maxDistance /// and rcCompactHeightfield::dist fields. /// /// @see rcCompactHeightfield, rcBuildRegions, rcBuildRegionsMonotone bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_BUILD_DISTANCEFIELD); if (chf.dist) { rcFree(chf.dist); chf.dist = 0; } unsigned short* src = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); if (!src) { ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'src' (%d).", chf.spanCount); return false; } unsigned short* dst = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); if (!dst) { ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dst' (%d).", chf.spanCount); rcFree(src); return false; } unsigned short maxDist = 0; { rcScopedTimer timerDist(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST); calculateDistanceField(chf, src, maxDist); chf.maxDistance = maxDist; } { rcScopedTimer timerBlur(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR); // Blur if (boxBlur(chf, 1, src, dst) != src) rcSwap(src, dst); // Store distance. chf.dist = src; } rcFree(dst); return true; } static void paintRectRegion(int minx, int maxx, int miny, int maxy, unsigned short regId, rcCompactHeightfield& chf, unsigned short* srcReg) { const int w = chf.width; for (int y = miny; y < maxy; ++y) { for (int x = minx; x < maxx; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (chf.areas[i] != RC_NULL_AREA) srcReg[i] = regId; } } } } static const unsigned short RC_NULL_NEI = 0xffff; struct rcSweepSpan { unsigned short rid; // row id unsigned short id; // region id unsigned short ns; // number samples unsigned short nei; // neighbour id }; /// @par /// /// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour. /// Contours will form simple polygons. /// /// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be /// re-assigned to the zero (null) region. /// /// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps /// reduce unecessarily small regions. /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// The region data will be available via the rcCompactHeightfield::maxRegions /// and rcCompactSpan::reg fields. /// /// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions. /// /// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int minRegionArea, const int mergeRegionArea) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); const int w = chf.width; const int h = chf.height; unsigned short id = 1; rcScopedDelete srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP)); if (!srcReg) { ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount); return false; } memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); const int nsweeps = rcMax(chf.width,chf.height); rcScopedDelete sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP)); if (!sweeps) { ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps); return false; } // Mark border regions. if (borderSize > 0) { // Make sure border will not overflow. const int bw = rcMin(w, borderSize); const int bh = rcMin(h, borderSize); // Paint regions paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; } chf.borderSize = borderSize; rcIntArray prev(256); // Sweep one line at a time. for (int y = borderSize; y < h-borderSize; ++y) { // Collect spans from this row. prev.resize(id+1); memset(&prev[0],0,sizeof(int)*id); unsigned short rid = 1; for (int x = borderSize; x < w-borderSize; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (chf.areas[i] == RC_NULL_AREA) continue; // -x unsigned short previd = 0; if (rcGetCon(s, 0) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(0); const int ay = y + rcGetDirOffsetY(0); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) previd = srcReg[ai]; } if (!previd) { previd = rid++; sweeps[previd].rid = previd; sweeps[previd].ns = 0; sweeps[previd].nei = 0; } // -y if (rcGetCon(s,3) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(3); const int ay = y + rcGetDirOffsetY(3); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) { unsigned short nr = srcReg[ai]; if (!sweeps[previd].nei || sweeps[previd].nei == nr) { sweeps[previd].nei = nr; sweeps[previd].ns++; prev[nr]++; } else { sweeps[previd].nei = RC_NULL_NEI; } } } srcReg[i] = previd; } } // Create unique ID. for (int i = 1; i < rid; ++i) { if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && prev[sweeps[i].nei] == (int)sweeps[i].ns) { sweeps[i].id = sweeps[i].nei; } else { sweeps[i].id = id++; } } // Remap IDs for (int x = borderSize; x < w-borderSize; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (srcReg[i] > 0 && srcReg[i] < rid) srcReg[i] = sweeps[srcReg[i]].id; } } } { rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); // Merge regions and filter out small regions. rcIntArray overlaps; chf.maxRegions = id; if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) return false; // Monotone partitioning does not generate overlapping regions. } // Store the result out. for (int i = 0; i < chf.spanCount; ++i) chf.spans[i].reg = srcReg[i]; return true; } /// @par /// /// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour. /// Contours will form simple polygons. /// /// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be /// re-assigned to the zero (null) region. /// /// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors. /// @p mergeRegionArea helps reduce unecessarily small regions. /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// The region data will be available via the rcCompactHeightfield::maxRegions /// and rcCompactSpan::reg fields. /// /// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions. /// /// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int minRegionArea, const int mergeRegionArea) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); const int w = chf.width; const int h = chf.height; rcScopedDelete buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*2, RC_ALLOC_TEMP)); if (!buf) { ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4); return false; } ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); const int LOG_NB_STACKS = 3; const int NB_STACKS = 1 << LOG_NB_STACKS; rcTempVector lvlStacks[NB_STACKS]; for (int i=0; i stack; stack.reserve(256); unsigned short* srcReg = buf; unsigned short* srcDist = buf+chf.spanCount; memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount); memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount); unsigned short regionId = 1; unsigned short level = (chf.maxDistance+1) & ~1; // TODO: Figure better formula, expandIters defines how much the // watershed "overflows" and simplifies the regions. Tying it to // agent radius was usually good indication how greedy it could be. // const int expandIters = 4 + walkableRadius * 2; const int expandIters = 8; if (borderSize > 0) { // Make sure border will not overflow. const int bw = rcMin(w, borderSize); const int bh = rcMin(h, borderSize); // Paint regions paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++; paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; } chf.borderSize = borderSize; int sId = -1; while (level > 0) { level = level >= 2 ? level-2 : 0; sId = (sId+1) & (NB_STACKS-1); // ctx->startTimer(RC_TIMER_DIVIDE_TO_LEVELS); if (sId == 0) sortCellsByLevel(level, chf, srcReg, NB_STACKS, lvlStacks, 1); else appendStacks(lvlStacks[sId-1], lvlStacks[sId], srcReg); // copy left overs from last level // ctx->stopTimer(RC_TIMER_DIVIDE_TO_LEVELS); { rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND); // Expand current regions until no empty connected cells found. expandRegions(expandIters, level, chf, srcReg, srcDist, lvlStacks[sId], false); } { rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD); // Mark new regions with IDs. for (int j = 0; j= 0 && srcReg[i] == 0) { if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack)) { if (regionId == 0xFFFF) { ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow"); return false; } regionId++; } } } } } // Expand current regions until no empty connected cells found. expandRegions(expandIters*8, 0, chf, srcReg, srcDist, stack, true); ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); { rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); // Merge regions and filter out smalle regions. rcIntArray overlaps; chf.maxRegions = regionId; if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) return false; // If overlapping regions were found during merging, split those regions. if (overlaps.size() > 0) { ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size()); } } // Write the result out. for (int i = 0; i < chf.spanCount; ++i) chf.spans[i].reg = srcReg[i]; return true; } bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int minRegionArea) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); const int w = chf.width; const int h = chf.height; unsigned short id = 1; rcScopedDelete srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP)); if (!srcReg) { ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'src' (%d).", chf.spanCount); return false; } memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); const int nsweeps = rcMax(chf.width,chf.height); rcScopedDelete sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP)); if (!sweeps) { ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'sweeps' (%d).", nsweeps); return false; } // Mark border regions. if (borderSize > 0) { // Make sure border will not overflow. const int bw = rcMin(w, borderSize); const int bh = rcMin(h, borderSize); // Paint regions paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; } chf.borderSize = borderSize; rcIntArray prev(256); // Sweep one line at a time. for (int y = borderSize; y < h-borderSize; ++y) { // Collect spans from this row. prev.resize(id+1); memset(&prev[0],0,sizeof(int)*id); unsigned short rid = 1; for (int x = borderSize; x < w-borderSize; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (chf.areas[i] == RC_NULL_AREA) continue; // -x unsigned short previd = 0; if (rcGetCon(s, 0) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(0); const int ay = y + rcGetDirOffsetY(0); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) previd = srcReg[ai]; } if (!previd) { previd = rid++; sweeps[previd].rid = previd; sweeps[previd].ns = 0; sweeps[previd].nei = 0; } // -y if (rcGetCon(s,3) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(3); const int ay = y + rcGetDirOffsetY(3); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) { unsigned short nr = srcReg[ai]; if (!sweeps[previd].nei || sweeps[previd].nei == nr) { sweeps[previd].nei = nr; sweeps[previd].ns++; prev[nr]++; } else { sweeps[previd].nei = RC_NULL_NEI; } } } srcReg[i] = previd; } } // Create unique ID. for (int i = 1; i < rid; ++i) { if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && prev[sweeps[i].nei] == (int)sweeps[i].ns) { sweeps[i].id = sweeps[i].nei; } else { sweeps[i].id = id++; } } // Remap IDs for (int x = borderSize; x < w-borderSize; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (srcReg[i] > 0 && srcReg[i] < rid) srcReg[i] = sweeps[srcReg[i]].id; } } } { rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); // Merge monotone regions to layers and remove small regions. chf.maxRegions = id; if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg)) return false; } // Store the result out. for (int i = 0; i < chf.spanCount; ++i) chf.spans[i].reg = srcReg[i]; return true; }