// Boost.Geometry // Copyright (c) 2017-2018 Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP #define BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace formula { /*! \brief Compute the arc length of an ellipse. */ template class meridian_inverse { public : struct result { result() : distance(0) , meridian(false) {} CT distance; bool meridian; }; template static bool meridian_not_crossing_pole(T lat1, T lat2, CT diff) { CT half_pi = math::pi()/CT(2); return math::equals(diff, CT(0)) || (math::equals(lat2, half_pi) && math::equals(lat1, -half_pi)); } static bool meridian_crossing_pole(CT diff) { return math::equals(math::abs(diff), math::pi()); } template static CT meridian_not_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid) { return math::abs(apply(lat2, spheroid) - apply(lat1, spheroid)); } template static CT meridian_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid) { CT c0 = 0; CT half_pi = math::pi()/CT(2); CT lat_sign = 1; if (lat1+lat2 < c0) { lat_sign = CT(-1); } return math::abs(lat_sign * CT(2) * apply(half_pi, spheroid) - apply(lat1, spheroid) - apply(lat2, spheroid)); } template static result apply(T lon1, T lat1, T lon2, T lat2, Spheroid const& spheroid) { result res; CT diff = geometry::math::longitude_distance_signed(lon1, lon2); if (lat1 > lat2) { std::swap(lat1, lat2); } if ( meridian_not_crossing_pole(lat1, lat2, diff) ) { res.distance = meridian_not_crossing_pole_dist(lat1, lat2, spheroid); res.meridian = true; } else if ( meridian_crossing_pole(diff) ) { res.distance = meridian_crossing_pole_dist(lat1, lat2, spheroid); res.meridian = true; } return res; } // Distance computation on meridians using series approximations // to elliptic integrals. Formula to compute distance from lattitude 0 to lat // https://en.wikipedia.org/wiki/Meridian_arc // latitudes are assumed to be in radians and in [-pi/2,pi/2] template static CT apply(T lat, Spheroid const& spheroid) { CT const a = get_radius<0>(spheroid); CT const f = formula::flattening(spheroid); CT n = f / (CT(2) - f); CT M = a/(1+n); CT C0 = 1; if (Order == 0) { return M * C0 * lat; } CT C2 = -1.5 * n; if (Order == 1) { return M * (C0 * lat + C2 * sin(2*lat)); } CT n2 = n * n; C0 += .25 * n2; CT C4 = 0.9375 * n2; if (Order == 2) { return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)); } CT n3 = n2 * n; C2 += 0.1875 * n3; CT C6 = -0.729166667 * n3; if (Order == 3) { return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat) + C6 * sin(6*lat)); } CT n4 = n2 * n2; C4 -= 0.234375 * n4; CT C8 = 0.615234375 * n4; if (Order == 4) { return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat) + C6 * sin(6*lat) + C8 * sin(8*lat)); } CT n5 = n4 * n; C6 += 0.227864583 * n5; CT C10 = -0.54140625 * n5; // Order 5 or higher return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat) + C6 * sin(6*lat) + C8 * sin(8*lat) + C10 * sin(10*lat)); } }; }}} // namespace boost::geometry::formula #endif // BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP