#ifndef BOOST_THREAD_WIN32_SHARED_MUTEX_HPP #define BOOST_THREAD_WIN32_SHARED_MUTEX_HPP // (C) Copyright 2006-8 Anthony Williams // (C) Copyright 2011-2012,2017-2018 Vicente J. Botet Escriba // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include #include #include #include #ifdef BOOST_THREAD_USES_CHRONO #include #include #endif #include #include #include namespace boost { class shared_mutex { private: struct state_data { unsigned long shared_count:11, shared_waiting:11, exclusive:1, upgrade:1, exclusive_waiting:7, exclusive_waiting_blocked:1; friend bool operator==(state_data const& lhs,state_data const& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0; } }; static state_data interlocked_compare_exchange(state_data* target, state_data new_value, state_data comparand) { BOOST_STATIC_ASSERT(sizeof(state_data) == sizeof(long)); long new_val, comp; std::memcpy(&new_val, &new_value, sizeof(new_value)); std::memcpy(&comp, &comparand, sizeof(comparand)); long const res=BOOST_INTERLOCKED_COMPARE_EXCHANGE(reinterpret_cast(target), new_val, comp); state_data result; std::memcpy(&result, &res, sizeof(result)); return result; } enum { unlock_sem = 0, exclusive_sem = 1 }; state_data state; detail::win32::handle semaphores[2]; detail::win32::handle upgrade_sem; void release_waiters(state_data old_state) { if(old_state.exclusive_waiting) { BOOST_VERIFY(winapi::ReleaseSemaphore(semaphores[exclusive_sem],1,0)!=0); } if(old_state.shared_waiting || old_state.exclusive_waiting) { BOOST_VERIFY(winapi::ReleaseSemaphore(semaphores[unlock_sem],old_state.shared_waiting + (old_state.exclusive_waiting?1:0),0)!=0); } } void release_shared_waiters(state_data old_state) { if(old_state.shared_waiting || old_state.exclusive_waiting) { BOOST_VERIFY(winapi::ReleaseSemaphore(semaphores[unlock_sem],old_state.shared_waiting + (old_state.exclusive_waiting?1:0),0)!=0); } } public: BOOST_THREAD_NO_COPYABLE(shared_mutex) shared_mutex() { semaphores[unlock_sem]=detail::win32::create_anonymous_semaphore(0,LONG_MAX); semaphores[exclusive_sem]=detail::win32::create_anonymous_semaphore_nothrow(0,LONG_MAX); if (!semaphores[exclusive_sem]) { detail::win32::release_semaphore(semaphores[unlock_sem],LONG_MAX); boost::throw_exception(thread_resource_error()); } upgrade_sem=detail::win32::create_anonymous_semaphore_nothrow(0,LONG_MAX); if (!upgrade_sem) { detail::win32::release_semaphore(semaphores[unlock_sem],LONG_MAX); detail::win32::release_semaphore(semaphores[exclusive_sem],LONG_MAX); boost::throw_exception(thread_resource_error()); } state_data state_={0,0,0,0,0,0}; state=state_; } ~shared_mutex() { winapi::CloseHandle(upgrade_sem); winapi::CloseHandle(semaphores[unlock_sem]); winapi::CloseHandle(semaphores[exclusive_sem]); } bool try_lock_shared() { state_data old_state=state; for(;;) { state_data new_state=old_state; if(!new_state.exclusive && !new_state.exclusive_waiting_blocked) { ++new_state.shared_count; if(!new_state.shared_count) { return false; } } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } return !(old_state.exclusive| old_state.exclusive_waiting_blocked); } void lock_shared() { for(;;) { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.exclusive || new_state.exclusive_waiting_blocked) { ++new_state.shared_waiting; if(!new_state.shared_waiting) { boost::throw_exception(boost::lock_error()); } } else { ++new_state.shared_count; if(!new_state.shared_count) { boost::throw_exception(boost::lock_error()); } } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } if(!(old_state.exclusive| old_state.exclusive_waiting_blocked)) { return; } BOOST_VERIFY(winapi::WaitForSingleObjectEx(semaphores[unlock_sem],::boost::detail::win32::infinite,0)==0); } } private: unsigned long getMs(detail::platform_duration const& d) { return static_cast(d.getMs()); } template unsigned long getMs(Duration const& d) { return static_cast(chrono::ceil(d).count()); } template bool do_lock_shared_until(Timepoint const& t, Duration const& max) { for(;;) { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.exclusive || new_state.exclusive_waiting_blocked) { ++new_state.shared_waiting; if(!new_state.shared_waiting) { boost::throw_exception(boost::lock_error()); } } else { ++new_state.shared_count; if(!new_state.shared_count) { boost::throw_exception(boost::lock_error()); } } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } if(!(old_state.exclusive| old_state.exclusive_waiting_blocked)) { return true; } // If the clock is the system clock, it may jump while this function // is waiting. To compensate for this and time out near the correct // time, we call WaitForSingleObjectEx() in a loop with a short // timeout and recheck the time remaining each time through the loop. unsigned long res=0; for(;;) { Duration d(t - Clock::now()); if(d <= Duration::zero()) // timeout occurred { res=detail::win32::timeout; break; } if(max != Duration::zero()) { d = (std::min)(d, max); } res=winapi::WaitForSingleObjectEx(semaphores[unlock_sem],getMs(d),0); if(res!=detail::win32::timeout) // semaphore released { break; } } if(res==detail::win32::timeout) { for(;;) { state_data new_state=old_state; if(new_state.exclusive || new_state.exclusive_waiting_blocked) { if(new_state.shared_waiting) { --new_state.shared_waiting; } } else { ++new_state.shared_count; if(!new_state.shared_count) { return false; } } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } if(!(old_state.exclusive| old_state.exclusive_waiting_blocked)) { return true; } return false; } BOOST_ASSERT(res==0); } } public: #if defined BOOST_THREAD_USES_DATETIME template bool timed_lock_shared(TimeDuration const & relative_time) { const detail::mono_platform_timepoint t(detail::mono_platform_clock::now() + detail::platform_duration(relative_time)); // The reference clock is steady and so no need to poll periodically, thus 0 ms max (i.e. no max) return do_lock_shared_until(t, detail::platform_duration::zero()); } bool timed_lock_shared(boost::system_time const& wait_until) { const detail::real_platform_timepoint t(wait_until); return do_lock_shared_until(t, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)); } #endif #ifdef BOOST_THREAD_USES_CHRONO template bool try_lock_shared_for(const chrono::duration& rel_time) { const chrono::steady_clock::time_point t(chrono::steady_clock::now() + rel_time); typedef typename chrono::duration Duration; typedef typename common_type::type common_duration; // The reference clock is steady and so no need to poll periodically, thus 0 ms max (i.e. no max) return do_lock_shared_until(t, common_duration::zero()); } template bool try_lock_shared_until(const chrono::time_point& t) { typedef typename common_type::type common_duration; // The reference clock is steady and so no need to poll periodically, thus 0 ms max (i.e. no max) return do_lock_shared_until(t, common_duration::zero()); } template bool try_lock_shared_until(const chrono::time_point& t) { typedef typename common_type::type common_duration; return do_lock_shared_until(t, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS))); } #endif void unlock_shared() { state_data old_state=state; for(;;) { state_data new_state=old_state; bool const last_reader=!--new_state.shared_count; if(last_reader) { if(new_state.upgrade) { new_state.upgrade=false; new_state.exclusive=true; } else { if(new_state.exclusive_waiting) { --new_state.exclusive_waiting; new_state.exclusive_waiting_blocked=false; } new_state.shared_waiting=0; } } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { if(last_reader) { if(old_state.upgrade) { BOOST_VERIFY(winapi::ReleaseSemaphore(upgrade_sem,1,0)!=0); } else { release_waiters(old_state); } } break; } old_state=current_state; } } bool try_lock() { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.shared_count || new_state.exclusive) { return false; } else { new_state.exclusive=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } return true; } void lock() { for(;;) { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.shared_count || new_state.exclusive) { ++new_state.exclusive_waiting; if(!new_state.exclusive_waiting) { boost::throw_exception(boost::lock_error()); } new_state.exclusive_waiting_blocked=true; } else { new_state.exclusive=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } if(!old_state.shared_count && !old_state.exclusive) { return; } #ifndef UNDER_CE const bool wait_all = true; #else const bool wait_all = false; #endif BOOST_VERIFY(winapi::WaitForMultipleObjectsEx(2,semaphores,wait_all,::boost::detail::win32::infinite,0)<2); } } private: template bool do_lock_until(Timepoint const& t, Duration const& max) { for(;;) { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.shared_count || new_state.exclusive) { ++new_state.exclusive_waiting; if(!new_state.exclusive_waiting) { boost::throw_exception(boost::lock_error()); } new_state.exclusive_waiting_blocked=true; } else { new_state.exclusive=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } if(!old_state.shared_count && !old_state.exclusive) { return true; } // If the clock is the system clock, it may jump while this function // is waiting. To compensate for this and time out near the correct // time, we call WaitForMultipleObjectsEx() in a loop with a short // timeout and recheck the time remaining each time through the loop. unsigned long wait_res=0; for(;;) { Duration d(t - Clock::now()); if(d <= Duration::zero()) // timeout occurred { wait_res=detail::win32::timeout; break; } if(max != Duration::zero()) { d = (std::min)(d, max); } #ifndef UNDER_CE wait_res=winapi::WaitForMultipleObjectsEx(2,semaphores,true,getMs(d),0); #else wait_res=winapi::WaitForMultipleObjectsEx(2,semaphores,false,getMs(d),0); #endif //wait_res=winapi::WaitForMultipleObjectsEx(2,semaphores,wait_all,getMs(d), 0); if(wait_res!=detail::win32::timeout) // semaphore released { break; } } if(wait_res==detail::win32::timeout) { for(;;) { bool must_notify = false; state_data new_state=old_state; if(new_state.shared_count || new_state.exclusive) { if(new_state.exclusive_waiting) { if(!--new_state.exclusive_waiting) { new_state.exclusive_waiting_blocked=false; must_notify = true; } } } else { new_state.exclusive=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if (must_notify) { BOOST_VERIFY(winapi::ReleaseSemaphore(semaphores[unlock_sem],1,0)!=0); } if(current_state==old_state) { break; } old_state=current_state; } if(!old_state.shared_count && !old_state.exclusive) { return true; } return false; } BOOST_ASSERT(wait_res<2); } } public: #if defined BOOST_THREAD_USES_DATETIME bool timed_lock(boost::system_time const& wait_until) { const detail::real_platform_timepoint t(wait_until); return do_lock_until(t, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)); } template bool timed_lock(TimeDuration const & relative_time) { const detail::mono_platform_timepoint t(detail::mono_platform_clock::now() + detail::platform_duration(relative_time)); // The reference clock is steady and so no need to poll periodically, thus 0 ms max (i.e. no max) return do_lock_until(t, detail::platform_duration::zero()); } #endif #ifdef BOOST_THREAD_USES_CHRONO template bool try_lock_for(const chrono::duration& rel_time) { const chrono::steady_clock::time_point t(chrono::steady_clock::now() + rel_time); typedef typename chrono::duration Duration; typedef typename common_type::type common_duration; // The reference clock is steady and so no need to poll periodically, thus 0 ms max (i.e. no max) return do_lock_until(t, common_duration::zero()); } template bool try_lock_until(const chrono::time_point& t) { typedef typename common_type::type common_duration; // The reference clock is steady and so no need to poll periodically, thus 0 ms max (i.e. no max) return do_lock_until(t, common_duration::zero()); } template bool try_lock_until(const chrono::time_point& t) { typedef typename common_type::type common_duration; return do_lock_until(t, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS))); } #endif void unlock() { state_data old_state=state; for(;;) { state_data new_state=old_state; new_state.exclusive=false; if(new_state.exclusive_waiting) { --new_state.exclusive_waiting; new_state.exclusive_waiting_blocked=false; } new_state.shared_waiting=0; state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } release_waiters(old_state); } void lock_upgrade() { for(;;) { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.exclusive || new_state.exclusive_waiting_blocked || new_state.upgrade) { ++new_state.shared_waiting; if(!new_state.shared_waiting) { boost::throw_exception(boost::lock_error()); } } else { ++new_state.shared_count; if(!new_state.shared_count) { boost::throw_exception(boost::lock_error()); } new_state.upgrade=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } if(!(old_state.exclusive|| old_state.exclusive_waiting_blocked|| old_state.upgrade)) { return; } BOOST_VERIFY(winapi::WaitForSingleObjectEx(semaphores[unlock_sem],winapi::infinite,0)==0); } } bool try_lock_upgrade() { state_data old_state=state; for(;;) { state_data new_state=old_state; if(new_state.exclusive || new_state.exclusive_waiting_blocked || new_state.upgrade) { return false; } else { ++new_state.shared_count; if(!new_state.shared_count) { return false; } new_state.upgrade=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } return true; } void unlock_upgrade() { state_data old_state=state; for(;;) { state_data new_state=old_state; new_state.upgrade=false; bool const last_reader=!--new_state.shared_count; new_state.shared_waiting=0; if(last_reader) { if(new_state.exclusive_waiting) { --new_state.exclusive_waiting; new_state.exclusive_waiting_blocked=false; } } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { if(last_reader) { release_waiters(old_state); } else { release_shared_waiters(old_state); } // #7720 //else { // release_waiters(old_state); //} break; } old_state=current_state; } } void unlock_upgrade_and_lock() { state_data old_state=state; for(;;) { state_data new_state=old_state; bool const last_reader=!--new_state.shared_count; if(last_reader) { new_state.upgrade=false; new_state.exclusive=true; } state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { if(!last_reader) { BOOST_VERIFY(winapi::WaitForSingleObjectEx(upgrade_sem,detail::win32::infinite,0)==0); } break; } old_state=current_state; } } void unlock_and_lock_upgrade() { state_data old_state=state; for(;;) { state_data new_state=old_state; new_state.exclusive=false; new_state.upgrade=true; ++new_state.shared_count; if(new_state.exclusive_waiting) { --new_state.exclusive_waiting; new_state.exclusive_waiting_blocked=false; } new_state.shared_waiting=0; state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } release_waiters(old_state); } void unlock_and_lock_shared() { state_data old_state=state; for(;;) { state_data new_state=old_state; new_state.exclusive=false; ++new_state.shared_count; if(new_state.exclusive_waiting) { --new_state.exclusive_waiting; new_state.exclusive_waiting_blocked=false; } new_state.shared_waiting=0; state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } release_waiters(old_state); } void unlock_upgrade_and_lock_shared() { state_data old_state=state; for(;;) { state_data new_state=old_state; new_state.upgrade=false; if(new_state.exclusive_waiting) { --new_state.exclusive_waiting; new_state.exclusive_waiting_blocked=false; } new_state.shared_waiting=0; state_data const current_state=interlocked_compare_exchange(&state,new_state,old_state); if(current_state==old_state) { break; } old_state=current_state; } release_waiters(old_state); } }; typedef shared_mutex upgrade_mutex; } #include #endif