//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #include #include #include #include #include #include #include #include #include #include #include #include template class calc_distance_visitor : public boost::bfs_visitor<> { public: calc_distance_visitor(Distance d) : distance(d) { } template void tree_edge(typename boost::graph_traits::edge_descriptor e, Graph& g) { typename boost::graph_traits::vertex_descriptor u, v; u = boost::source(e, g); v = boost::target(e, g); distance[v] = distance[u] + 1; } private: Distance distance; }; template class print_tree_visitor : public boost::dfs_visitor<> { public: print_tree_visitor(VertexNameMap n, DistanceMap d) : name(n), distance(d) { } template void discover_vertex(typename boost::graph_traits::vertex_descriptor v, Graph&) { typedef typename boost::property_traits::value_type Dist; // indentation based on depth for (Dist i = 0; i < distance[v]; ++i) std::cout << " "; std::cout << name[v] << std::endl; } template void tree_edge(typename boost::graph_traits::edge_descriptor e, Graph& g) { distance[boost::target(e, g)] = distance[boost::source(e, g)] + 1; } private: VertexNameMap name; DistanceMap distance; }; int main(int argc, const char** argv) { using namespace boost; std::ifstream datafile(argc >= 2 ? argv[1] : "./boost_web.dat"); if (!datafile) { std::cerr << "No ./boost_web.dat file" << std::endl; return -1; } //=========================================================================== // Declare the graph type and object, and some property maps. typedef adjacency_list >, property > > Graph; typedef graph_traits Traits; typedef Traits::vertex_descriptor Vertex; typedef Traits::edge_descriptor Edge; typedef std::map NameVertexMap; NameVertexMap name2vertex; Graph g; typedef property_map::type NameMap; NameMap node_name = get(vertex_name, g); property_map::type link_name = get(edge_name, g); //=========================================================================== // Read the data file and construct the graph. std::string line; while (std::getline(datafile,line)) { std::list line_toks; boost::stringtok(line_toks, line, "|"); NameVertexMap::iterator pos; bool inserted; Vertex u, v; std::list::iterator i = line_toks.begin(); boost::tie(pos, inserted) = name2vertex.insert(std::make_pair(*i, Vertex())); if (inserted) { u = add_vertex(g); put(node_name, u, *i); pos->second = u; } else u = pos->second; ++i; std::string hyperlink_name = *i++; boost::tie(pos, inserted) = name2vertex.insert(std::make_pair(*i, Vertex())); if (inserted) { v = add_vertex(g); put(node_name, v, *i); pos->second = v; } else v = pos->second; Edge e; boost::tie(e, inserted) = add_edge(u, v, g); if (inserted) { put(link_name, e, hyperlink_name); } } //=========================================================================== // Calculate the diameter of the graph. typedef Traits::vertices_size_type size_type; typedef std::vector IntVector; // Create N x N matrix for storing the shortest distances // between each vertex. Initialize all distances to zero. std::vector d_matrix(num_vertices(g), IntVector(num_vertices(g), 0)); size_type i; for (i = 0; i < num_vertices(g); ++i) { calc_distance_visitor vis(&d_matrix[i][0]); Traits::vertex_descriptor src = vertices(g).first[i]; breadth_first_search(g, src, boost::visitor(vis)); } size_type diameter = 0; BOOST_USING_STD_MAX(); for (i = 0; i < num_vertices(g); ++i) diameter = max BOOST_PREVENT_MACRO_SUBSTITUTION(diameter, *std::max_element(d_matrix[i].begin(), d_matrix[i].end())); std::cout << "The diameter of the boost web-site graph is " << diameter << std::endl << std::endl; std::cout << "Number of clicks from the home page: " << std::endl; Traits::vertex_iterator vi, vi_end; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) std::cout << d_matrix[0][*vi] << "\t" << node_name[*vi] << std::endl; std::cout << std::endl; //=========================================================================== // Print out the breadth-first search tree starting at the home page // Create storage for a mapping from vertices to their parents std::vector parent(num_vertices(g)); for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) parent[*vi] = *vi; // Do a BFS starting at the home page, recording the parent of each // vertex (where parent is with respect to the search tree). Traits::vertex_descriptor src = vertices(g).first[0]; breadth_first_search (g, src, boost::visitor(make_bfs_visitor(record_predecessors(&parent[0], on_tree_edge())))); // Add all the search tree edges into a new graph Graph search_tree(num_vertices(g)); boost::tie(vi, vi_end) = vertices(g); ++vi; for (; vi != vi_end; ++vi) add_edge(parent[*vi], *vi, search_tree); std::cout << "The breadth-first search tree:" << std::endl; // Print out the search tree. We use DFS because it visits // the tree nodes in the order that we want to print out: // a directory-structure like format. std::vector dfs_distances(num_vertices(g), 0); print_tree_visitor tree_printer(node_name, &dfs_distances[0]); for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) get(vertex_color, g)[*vi] = white_color; depth_first_visit(search_tree, src, tree_printer, get(vertex_color, g)); return EXIT_SUCCESS; }