// //======================================================================= // Copyright (c) 2004 Kristopher Beevers // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= // #include #include #include #include #include #include #include #include #include // for sqrt #include using namespace boost; using namespace std; // auxiliary types struct location { float y, x; // lat, long }; struct my_float {float v; explicit my_float(float v = float()): v(v) {}}; typedef my_float cost; ostream& operator<<(ostream& o, my_float f) {return o << f.v;} my_float operator+(my_float a, my_float b) {return my_float(a.v + b.v);} bool operator==(my_float a, my_float b) {return a.v == b.v;} bool operator<(my_float a, my_float b) {return a.v < b.v;} template class city_writer { public: city_writer(Name n, LocMap l, float _minx, float _maxx, float _miny, float _maxy, unsigned int _ptx, unsigned int _pty) : name(n), loc(l), minx(_minx), maxx(_maxx), miny(_miny), maxy(_maxy), ptx(_ptx), pty(_pty) {} template void operator()(ostream& out, const Vertex& v) const { float px = 1 - (loc[v].x - minx) / (maxx - minx); float py = (loc[v].y - miny) / (maxy - miny); out << "[label=\"" << name[v] << "\", pos=\"" << static_cast(ptx * px) << "," << static_cast(pty * py) << "\", fontsize=\"11\"]"; } private: Name name; LocMap loc; float minx, maxx, miny, maxy; unsigned int ptx, pty; }; template class time_writer { public: time_writer(WeightMap w) : wm(w) {} template void operator()(ostream &out, const Edge& e) const { out << "[label=\"" << wm[e] << "\", fontsize=\"11\"]"; } private: WeightMap wm; }; // euclidean distance heuristic template class distance_heuristic : public astar_heuristic { public: typedef typename graph_traits::vertex_descriptor Vertex; distance_heuristic(LocMap l, Vertex goal) : m_location(l), m_goal(goal) {} CostType operator()(Vertex u) { float dx = m_location[m_goal].x - m_location[u].x; float dy = m_location[m_goal].y - m_location[u].y; return CostType(::sqrt(dx * dx + dy * dy)); } private: LocMap m_location; Vertex m_goal; }; struct found_goal {}; // exception for termination // visitor that terminates when we find the goal template class astar_goal_visitor : public boost::default_astar_visitor { public: astar_goal_visitor(Vertex goal) : m_goal(goal) {} template void examine_vertex(Vertex u, Graph&) { if(u == m_goal) throw found_goal(); } private: Vertex m_goal; }; int main(int, char **) { // specify some types typedef adjacency_list > mygraph_t; typedef property_map::type WeightMap; typedef mygraph_t::vertex_descriptor vertex; typedef mygraph_t::edge_descriptor edge_descriptor; typedef std::pair edge; // specify data enum nodes { Troy, LakePlacid, Plattsburgh, Massena, Watertown, Utica, Syracuse, Rochester, Buffalo, Ithaca, Binghamton, Woodstock, NewYork, N }; const char *name[] = { "Troy", "Lake Placid", "Plattsburgh", "Massena", "Watertown", "Utica", "Syracuse", "Rochester", "Buffalo", "Ithaca", "Binghamton", "Woodstock", "New York" }; location locations[] = { // lat/long {42.73, 73.68}, {44.28, 73.99}, {44.70, 73.46}, {44.93, 74.89}, {43.97, 75.91}, {43.10, 75.23}, {43.04, 76.14}, {43.17, 77.61}, {42.89, 78.86}, {42.44, 76.50}, {42.10, 75.91}, {42.04, 74.11}, {40.67, 73.94} }; edge edge_array[] = { edge(Troy,Utica), edge(Troy,LakePlacid), edge(Troy,Plattsburgh), edge(LakePlacid,Plattsburgh), edge(Plattsburgh,Massena), edge(LakePlacid,Massena), edge(Massena,Watertown), edge(Watertown,Utica), edge(Watertown,Syracuse), edge(Utica,Syracuse), edge(Syracuse,Rochester), edge(Rochester,Buffalo), edge(Syracuse,Ithaca), edge(Ithaca,Binghamton), edge(Ithaca,Rochester), edge(Binghamton,Troy), edge(Binghamton,Woodstock), edge(Binghamton,NewYork), edge(Syracuse,Binghamton), edge(Woodstock,Troy), edge(Woodstock,NewYork) }; unsigned int num_edges = sizeof(edge_array) / sizeof(edge); cost weights[] = { // estimated travel time (mins) my_float(96), my_float(134), my_float(143), my_float(65), my_float(115), my_float(133), my_float(117), my_float(116), my_float(74), my_float(56), my_float(84), my_float(73), my_float(69), my_float(70), my_float(116), my_float(147), my_float(173), my_float(183), my_float(74), my_float(71), my_float(124) }; // create graph mygraph_t g(N); WeightMap weightmap = get(edge_weight, g); for(std::size_t j = 0; j < num_edges; ++j) { edge_descriptor e; bool inserted; boost::tie(e, inserted) = add_edge(edge_array[j].first, edge_array[j].second, g); weightmap[e] = weights[j]; } // pick random start/goal boost::minstd_rand gen(time(0)); vertex start = gen() % num_vertices(g); vertex goal = gen() % num_vertices(g); cout << "Start vertex: " << name[start] << endl; cout << "Goal vertex: " << name[goal] << endl; vector p(num_vertices(g)); vector d(num_vertices(g)); boost::property_map::const_type idx = get(boost::vertex_index, g); try { // call astar named parameter interface astar_search (g, start, distance_heuristic (locations, goal), predecessor_map(make_iterator_property_map(p.begin(), idx)). distance_map(make_iterator_property_map(d.begin(), idx)). visitor(astar_goal_visitor(goal)).distance_inf(my_float((std::numeric_limits::max)()))); } catch(found_goal fg) { // found a path to the goal list shortest_path; for(vertex v = goal;; v = p[v]) { shortest_path.push_front(v); if(p[v] == v) break; } cout << "Shortest path from " << name[start] << " to " << name[goal] << ": "; list::iterator spi = shortest_path.begin(); cout << name[start]; for(++spi; spi != shortest_path.end(); ++spi) cout << " -> " << name[*spi]; cout << endl << "Total travel time: " << d[goal] << endl; return 0; } cout << "Didn't find a path from " << name[start] << "to" << name[goal] << "!" << endl; return 0; }