/** * * Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net) * * Authors: Matthias Walter * * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * */ #include #include #include #include /// Verifies a 2-coloring template void check_two_coloring (const Graph& g, const ColorMap color_map) { typedef boost::graph_traits traits; typename traits::edge_iterator edge_iter, edge_end; for (boost::tie (edge_iter, edge_end) = boost::edges (g); edge_iter != edge_end; ++edge_iter) { typename traits::vertex_descriptor source, target; source = boost::source (*edge_iter, g); target = boost::target (*edge_iter, g); BOOST_REQUIRE (boost::get(color_map, source) != boost::get(color_map, target)); } } /// Tests for a vertex sequence to define an odd cycle template void check_odd_cycle (const Graph& g, RandomAccessIterator first, RandomAccessIterator beyond) { typedef boost::graph_traits traits; typename traits::vertex_descriptor first_vertex, current_vertex, last_vertex; BOOST_CHECK ((beyond - first) % 2 == 1); // std::cout << "odd_cycle: " << int(*first) << std::endl; for (first_vertex = current_vertex = *first++; first != beyond; ++first) { // std::cout << "odd_cycle: " << int(*first) << std::endl; last_vertex = current_vertex; current_vertex = *first; BOOST_REQUIRE (boost::lookup_edge (current_vertex, last_vertex, g).second); } BOOST_REQUIRE (boost::lookup_edge (first_vertex, current_vertex, g).second); } /// Call the is_bipartite and find_odd_cycle functions and verify their results. template void check_bipartite (const Graph& g, IndexMap index_map, bool is_bipartite) { typedef boost::graph_traits traits; typedef std::vector partition_t; typedef std::vector vertex_vector_t; typedef boost::iterator_property_map partition_map_t; partition_t partition (boost::num_vertices (g)); partition_map_t partition_map (partition.begin (), index_map); vertex_vector_t odd_cycle (boost::num_vertices (g)); bool first_result = boost::is_bipartite (g, index_map, partition_map); BOOST_REQUIRE (first_result == boost::is_bipartite(g, index_map)); if (first_result) check_two_coloring (g, partition_map); BOOST_CHECK (first_result == is_bipartite); typename vertex_vector_t::iterator second_first = odd_cycle.begin (); typename vertex_vector_t::iterator second_beyond = boost::find_odd_cycle (g, index_map, partition_map, second_first); if (is_bipartite) { BOOST_CHECK (second_beyond == second_first); check_two_coloring (g, partition_map); } else { check_odd_cycle (g, second_first, second_beyond); } second_beyond = boost::find_odd_cycle (g, index_map, second_first); if (is_bipartite) { BOOST_CHECK (second_beyond == second_first); } else { check_odd_cycle (g, second_first, second_beyond); } } int test_main (int argc, char **argv) { typedef boost::adjacency_list vector_graph_t; typedef boost::adjacency_list list_graph_t; typedef std::pair E; typedef std::map ::vertex_descriptor, size_t> index_map_t; typedef boost::associative_property_map index_property_map_t; /** * Create the graph drawn below. * * 0 - 1 - 2 * | | * 3 - 4 - 5 - 6 * / \ / * | 7 * | | * 8 - 9 - 10 **/ E bipartite_edges[] = { E (0, 1), E (0, 4), E (1, 2), E (2, 6), E (3, 4), E (3, 8), E (4, 5), E (4, 7), E (5, 6), E ( 6, 7), E (7, 10), E (8, 9), E (9, 10) }; vector_graph_t bipartite_vector_graph (&bipartite_edges[0], &bipartite_edges[0] + sizeof(bipartite_edges) / sizeof(E), 11); list_graph_t bipartite_list_graph (&bipartite_edges[0], &bipartite_edges[0] + sizeof(bipartite_edges) / sizeof(E), 11); /** * Create the graph drawn below. * * 2 - 1 - 0 * | | * 3 - 6 - 5 - 4 * / \ / * | 7 * | / * 8 ---- 9 * **/ E non_bipartite_edges[] = { E (0, 1), E (0, 4), E (1, 2), E (2, 6), E (3, 4), E (3, 8), E (4, 5), E (4, 7), E (5, 6), E (6, 7), E (7, 9), E (8, 9) }; vector_graph_t non_bipartite_vector_graph (&non_bipartite_edges[0], &non_bipartite_edges[0] + sizeof(non_bipartite_edges) / sizeof(E), 10); list_graph_t non_bipartite_list_graph (&non_bipartite_edges[0], &non_bipartite_edges[0] + sizeof(non_bipartite_edges) / sizeof(E), 10); /// Create index maps index_map_t bipartite_index_map, non_bipartite_index_map; boost::graph_traits ::vertex_iterator vertex_iter, vertex_end; size_t i = 0; for (boost::tie (vertex_iter, vertex_end) = boost::vertices (bipartite_list_graph); vertex_iter != vertex_end; ++vertex_iter) { bipartite_index_map[*vertex_iter] = i++; } index_property_map_t bipartite_index_property_map = index_property_map_t (bipartite_index_map); i = 0; for (boost::tie (vertex_iter, vertex_end) = boost::vertices (non_bipartite_list_graph); vertex_iter != vertex_end; ++vertex_iter) { non_bipartite_index_map[*vertex_iter] = i++; } index_property_map_t non_bipartite_index_property_map = index_property_map_t (non_bipartite_index_map); /// Call real checks check_bipartite (bipartite_vector_graph, boost::get (boost::vertex_index, bipartite_vector_graph), true); check_bipartite (bipartite_list_graph, bipartite_index_property_map, true); check_bipartite (non_bipartite_vector_graph, boost::get (boost::vertex_index, non_bipartite_vector_graph), false); check_bipartite (non_bipartite_list_graph, non_bipartite_index_property_map, false); /// Test some more interfaces BOOST_REQUIRE (is_bipartite (bipartite_vector_graph)); BOOST_REQUIRE (!is_bipartite (non_bipartite_vector_graph)); return 0; }