// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019. // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Author: Gerald Evenden (1995) // Thomas Knudsen (2016) - revise/add regression tests // Last updated version of proj: 5.0.0 // Original copyright notice: // Purpose: Implementation of the aea (Albers Equal Area) projection. // Author: Gerald Evenden // Copyright (c) 1995, Gerald Evenden // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_AEA_HPP #define BOOST_GEOMETRY_PROJECTIONS_AEA_HPP #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace aea { static const double epsilon10 = 1.e-10; static const double tolerance7 = 1.e-7; static const double epsilon = 1.0e-7; static const double tolerance = 1.0e-10; static const int n_iter = 15; template struct par_aea { T ec; T n; T c; T dd; T n2; T rho0; T phi1; T phi2; detail::en en; bool ellips; }; /* determine latitude angle phi-1 */ template inline T phi1_(T const& qs, T const& Te, T const& Tone_es) { int i; T Phi, sinpi, cospi, con, com, dphi; Phi = asin (.5 * qs); if (Te < epsilon) return( Phi ); i = n_iter; do { sinpi = sin (Phi); cospi = cos (Phi); con = Te * sinpi; com = 1. - con * con; dphi = .5 * com * com / cospi * (qs / Tone_es - sinpi / com + .5 / Te * log ((1. - con) / (1. + con))); Phi += dphi; } while (fabs(dphi) > tolerance && --i); return( i ? Phi : HUGE_VAL ); } template struct base_aea_ellipsoid { par_aea m_proj_parm; // FORWARD(e_forward) ellipsoid & spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { T rho = this->m_proj_parm.c - (this->m_proj_parm.ellips ? this->m_proj_parm.n * pj_qsfn(sin(lp_lat), par.e, par.one_es) : this->m_proj_parm.n2 * sin(lp_lat)); if (rho < 0.) BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); rho = this->m_proj_parm.dd * sqrt(rho); xy_x = rho * sin( lp_lon *= this->m_proj_parm.n ); xy_y = this->m_proj_parm.rho0 - rho * cos(lp_lon); } // INVERSE(e_inverse) ellipsoid & spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const { static const T half_pi = detail::half_pi(); T rho = 0.0; if( (rho = boost::math::hypot(xy_x, xy_y = this->m_proj_parm.rho0 - xy_y)) != 0.0 ) { if (this->m_proj_parm.n < 0.) { rho = -rho; xy_x = -xy_x; xy_y = -xy_y; } lp_lat = rho / this->m_proj_parm.dd; if (this->m_proj_parm.ellips) { lp_lat = (this->m_proj_parm.c - lp_lat * lp_lat) / this->m_proj_parm.n; if (fabs(this->m_proj_parm.ec - fabs(lp_lat)) > tolerance7) { if ((lp_lat = phi1_(lp_lat, par.e, par.one_es)) == HUGE_VAL) BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); } else lp_lat = lp_lat < 0. ? -half_pi : half_pi; } else if (fabs(lp_lat = (this->m_proj_parm.c - lp_lat * lp_lat) / this->m_proj_parm.n2) <= 1.) lp_lat = asin(lp_lat); else lp_lat = lp_lat < 0. ? -half_pi : half_pi; lp_lon = atan2(xy_x, xy_y) / this->m_proj_parm.n; } else { lp_lon = 0.; lp_lat = this->m_proj_parm.n > 0. ? half_pi : - half_pi; } } static inline std::string get_name() { return "aea_ellipsoid"; } }; template inline void setup(Parameters const& par, par_aea& proj_parm) { T cosphi, sinphi; int secant; if (fabs(proj_parm.phi1 + proj_parm.phi2) < epsilon10) BOOST_THROW_EXCEPTION( projection_exception(error_conic_lat_equal) ); proj_parm.n = sinphi = sin(proj_parm.phi1); cosphi = cos(proj_parm.phi1); secant = fabs(proj_parm.phi1 - proj_parm.phi2) >= epsilon10; if( (proj_parm.ellips = (par.es > 0.))) { T ml1, m1; proj_parm.en = pj_enfn(par.es); m1 = pj_msfn(sinphi, cosphi, par.es); ml1 = pj_qsfn(sinphi, par.e, par.one_es); if (secant) { /* secant cone */ T ml2, m2; sinphi = sin(proj_parm.phi2); cosphi = cos(proj_parm.phi2); m2 = pj_msfn(sinphi, cosphi, par.es); ml2 = pj_qsfn(sinphi, par.e, par.one_es); if (ml2 == ml1) BOOST_THROW_EXCEPTION( projection_exception(0) ); proj_parm.n = (m1 * m1 - m2 * m2) / (ml2 - ml1); } proj_parm.ec = 1. - .5 * par.one_es * log((1. - par.e) / (1. + par.e)) / par.e; proj_parm.c = m1 * m1 + proj_parm.n * ml1; proj_parm.dd = 1. / proj_parm.n; proj_parm.rho0 = proj_parm.dd * sqrt(proj_parm.c - proj_parm.n * pj_qsfn(sin(par.phi0), par.e, par.one_es)); } else { if (secant) proj_parm.n = .5 * (proj_parm.n + sin(proj_parm.phi2)); proj_parm.n2 = proj_parm.n + proj_parm.n; proj_parm.c = cosphi * cosphi + proj_parm.n2 * sinphi; proj_parm.dd = 1. / proj_parm.n; proj_parm.rho0 = proj_parm.dd * sqrt(proj_parm.c - proj_parm.n2 * sin(par.phi0)); } } // Albers Equal Area template inline void setup_aea(Params const& params, Parameters const& par, par_aea& proj_parm) { proj_parm.phi1 = 0.0; proj_parm.phi2 = 0.0; bool is_phi1_set = pj_param_r(params, "lat_1", srs::dpar::lat_1, proj_parm.phi1); bool is_phi2_set = pj_param_r(params, "lat_2", srs::dpar::lat_2, proj_parm.phi2); // Boost.Geometry specific, set default parameters manually if (! is_phi1_set || ! is_phi2_set) { bool const use_defaults = ! pj_get_param_b(params, "no_defs", srs::dpar::no_defs); if (use_defaults) { if (!is_phi1_set) proj_parm.phi1 = 29.5; if (!is_phi2_set) proj_parm.phi2 = 45.5; } } setup(par, proj_parm); } // Lambert Equal Area Conic template inline void setup_leac(Params const& params, Parameters const& par, par_aea& proj_parm) { static const T half_pi = detail::half_pi(); proj_parm.phi2 = pj_get_param_r(params, "lat_1", srs::dpar::lat_1); proj_parm.phi1 = pj_get_param_b(params, "south", srs::dpar::south) ? -half_pi : half_pi; setup(par, proj_parm); } }} // namespace detail::aea #endif // doxygen /*! \brief Albers Equal Area projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Conic - Spheroid - Ellipsoid \par Projection parameters - lat_1: Latitude of first standard parallel (degrees) - lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_aea.gif */ template struct aea_ellipsoid : public detail::aea::base_aea_ellipsoid { template inline aea_ellipsoid(Params const& params, Parameters const& par) { detail::aea::setup_aea(params, par, this->m_proj_parm); } }; /*! \brief Lambert Equal Area Conic projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Conic - Spheroid - Ellipsoid \par Projection parameters - lat_1: Latitude of first standard parallel (degrees) - south: Denotes southern hemisphere UTM zone (boolean) \par Example \image html ex_leac.gif */ template struct leac_ellipsoid : public detail::aea::base_aea_ellipsoid { template inline leac_ellipsoid(Params const& params, Parameters const& par) { detail::aea::setup_leac(params, par, this->m_proj_parm); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_aea, aea_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_leac, leac_ellipsoid) // Factory entry(s) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(aea_entry, aea_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(leac_entry, leac_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(aea_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(aea, aea_entry) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(leac, leac_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_AEA_HPP