// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019. // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 5.0.0 // Original copyright notice: // Purpose: Implementation of the aeqd (Azimuthal Equidistant) projection. // Author: Gerald Evenden // Copyright (c) 1995, Gerald Evenden // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_AEQD_HPP #define BOOST_GEOMETRY_PROJECTIONS_AEQD_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace aeqd { static const double epsilon10 = 1.e-10; static const double tolerance = 1.e-14; enum mode_type { n_pole = 0, s_pole = 1, equit = 2, obliq = 3 }; template struct par_aeqd { T sinph0; T cosph0; detail::en en; T M1; //T N1; T Mp; //T He; //T G; T b; mode_type mode; }; template inline void e_forward(T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y, Par const& par, ProjParm const& proj_parm) { T coslam, cosphi, sinphi, rho; //T azi1, s12; //T lam1, phi1, lam2, phi2; coslam = cos(lp_lon); cosphi = cos(lp_lat); sinphi = sin(lp_lat); switch (proj_parm.mode) { case n_pole: coslam = - coslam; BOOST_FALLTHROUGH; case s_pole: xy_x = (rho = fabs(proj_parm.Mp - pj_mlfn(lp_lat, sinphi, cosphi, proj_parm.en))) * sin(lp_lon); xy_y = rho * coslam; break; case equit: case obliq: if (fabs(lp_lon) < epsilon10 && fabs(lp_lat - par.phi0) < epsilon10) { xy_x = xy_y = 0.; break; } //phi1 = par.phi0; lam1 = par.lam0; //phi2 = lp_lat; lam2 = lp_lon + par.lam0; formula::result_inverse const inv = formula::vincenty_inverse < T, true, true >::apply(par.lam0, par.phi0, lp_lon + par.lam0, lp_lat, srs::spheroid(par.a, proj_parm.b)); //azi1 = inv.azimuth; s12 = inv.distance; xy_x = inv.distance * sin(inv.azimuth) / par.a; xy_y = inv.distance * cos(inv.azimuth) / par.a; break; } } template inline void e_inverse(T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat, Par const& par, ProjParm const& proj_parm) { T c; if ((c = boost::math::hypot(xy_x, xy_y)) < epsilon10) { lp_lat = par.phi0; lp_lon = 0.; return; } if (proj_parm.mode == obliq || proj_parm.mode == equit) { T const x2 = xy_x * par.a; T const y2 = xy_y * par.a; //T const lat1 = par.phi0; //T const lon1 = par.lam0; T const azi1 = atan2(x2, y2); T const s12 = sqrt(x2 * x2 + y2 * y2); formula::result_direct const dir = formula::vincenty_direct < T, true >::apply(par.lam0, par.phi0, s12, azi1, srs::spheroid(par.a, proj_parm.b)); lp_lat = dir.lat2; lp_lon = dir.lon2; lp_lon -= par.lam0; } else { /* Polar */ lp_lat = pj_inv_mlfn(proj_parm.mode == n_pole ? proj_parm.Mp - c : proj_parm.Mp + c, par.es, proj_parm.en); lp_lon = atan2(xy_x, proj_parm.mode == n_pole ? -xy_y : xy_y); } } template inline void e_guam_fwd(T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y, Par const& par, ProjParm const& proj_parm) { T cosphi, sinphi, t; cosphi = cos(lp_lat); sinphi = sin(lp_lat); t = 1. / sqrt(1. - par.es * sinphi * sinphi); xy_x = lp_lon * cosphi * t; xy_y = pj_mlfn(lp_lat, sinphi, cosphi, proj_parm.en) - proj_parm.M1 + .5 * lp_lon * lp_lon * cosphi * sinphi * t; } template inline void e_guam_inv(T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat, Par const& par, ProjParm const& proj_parm) { T x2, t = 0.0; int i; x2 = 0.5 * xy_x * xy_x; lp_lat = par.phi0; for (i = 0; i < 3; ++i) { t = par.e * sin(lp_lat); lp_lat = pj_inv_mlfn(proj_parm.M1 + xy_y - x2 * tan(lp_lat) * (t = sqrt(1. - t * t)), par.es, proj_parm.en); } lp_lon = xy_x * t / cos(lp_lat); } template inline void s_forward(T const& lp_lon, T lp_lat, T& xy_x, T& xy_y, Par const& /*par*/, ProjParm const& proj_parm) { static const T half_pi = detail::half_pi(); T coslam, cosphi, sinphi; sinphi = sin(lp_lat); cosphi = cos(lp_lat); coslam = cos(lp_lon); switch (proj_parm.mode) { case equit: xy_y = cosphi * coslam; goto oblcon; case obliq: xy_y = proj_parm.sinph0 * sinphi + proj_parm.cosph0 * cosphi * coslam; oblcon: if (fabs(fabs(xy_y) - 1.) < tolerance) if (xy_y < 0.) BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); else xy_x = xy_y = 0.; else { xy_y = acos(xy_y); xy_y /= sin(xy_y); xy_x = xy_y * cosphi * sin(lp_lon); xy_y *= (proj_parm.mode == equit) ? sinphi : proj_parm.cosph0 * sinphi - proj_parm.sinph0 * cosphi * coslam; } break; case n_pole: lp_lat = -lp_lat; coslam = -coslam; BOOST_FALLTHROUGH; case s_pole: if (fabs(lp_lat - half_pi) < epsilon10) BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); xy_x = (xy_y = (half_pi + lp_lat)) * sin(lp_lon); xy_y *= coslam; break; } } template inline void s_inverse(T xy_x, T xy_y, T& lp_lon, T& lp_lat, Par const& par, ProjParm const& proj_parm) { static const T pi = detail::pi(); static const T half_pi = detail::half_pi(); T cosc, c_rh, sinc; if ((c_rh = boost::math::hypot(xy_x, xy_y)) > pi) { if (c_rh - epsilon10 > pi) BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); c_rh = pi; } else if (c_rh < epsilon10) { lp_lat = par.phi0; lp_lon = 0.; return; } if (proj_parm.mode == obliq || proj_parm.mode == equit) { sinc = sin(c_rh); cosc = cos(c_rh); if (proj_parm.mode == equit) { lp_lat = aasin(xy_y * sinc / c_rh); xy_x *= sinc; xy_y = cosc * c_rh; } else { lp_lat = aasin(cosc * proj_parm.sinph0 + xy_y * sinc * proj_parm.cosph0 / c_rh); xy_y = (cosc - proj_parm.sinph0 * sin(lp_lat)) * c_rh; xy_x *= sinc * proj_parm.cosph0; } lp_lon = xy_y == 0. ? 0. : atan2(xy_x, xy_y); } else if (proj_parm.mode == n_pole) { lp_lat = half_pi - c_rh; lp_lon = atan2(xy_x, -xy_y); } else { lp_lat = c_rh - half_pi; lp_lon = atan2(xy_x, xy_y); } } // Azimuthal Equidistant template inline void setup_aeqd(Params const& params, Parameters& par, par_aeqd& proj_parm, bool is_sphere, bool is_guam) { static const T half_pi = detail::half_pi(); par.phi0 = pj_get_param_r(params, "lat_0", srs::dpar::lat_0); if (fabs(fabs(par.phi0) - half_pi) < epsilon10) { proj_parm.mode = par.phi0 < 0. ? s_pole : n_pole; proj_parm.sinph0 = par.phi0 < 0. ? -1. : 1.; proj_parm.cosph0 = 0.; } else if (fabs(par.phi0) < epsilon10) { proj_parm.mode = equit; proj_parm.sinph0 = 0.; proj_parm.cosph0 = 1.; } else { proj_parm.mode = obliq; proj_parm.sinph0 = sin(par.phi0); proj_parm.cosph0 = cos(par.phi0); } if (is_sphere) { /* empty */ } else { proj_parm.en = pj_enfn(par.es); if (is_guam) { proj_parm.M1 = pj_mlfn(par.phi0, proj_parm.sinph0, proj_parm.cosph0, proj_parm.en); } else { switch (proj_parm.mode) { case n_pole: proj_parm.Mp = pj_mlfn(half_pi, 1., 0., proj_parm.en); break; case s_pole: proj_parm.Mp = pj_mlfn(-half_pi, -1., 0., proj_parm.en); break; case equit: case obliq: //proj_parm.N1 = 1. / sqrt(1. - par.es * proj_parm.sinph0 * proj_parm.sinph0); //proj_parm.G = proj_parm.sinph0 * (proj_parm.He = par.e / sqrt(par.one_es)); //proj_parm.He *= proj_parm.cosph0; break; } // Boost.Geometry specific, in proj4 geodesic is initialized at the beginning proj_parm.b = math::sqrt(math::sqr(par.a) * (1. - par.es)); } } } template struct base_aeqd_e { par_aeqd m_proj_parm; // FORWARD(e_forward) elliptical // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { e_forward(lp_lon, lp_lat, xy_x, xy_y, par, this->m_proj_parm); } // INVERSE(e_inverse) elliptical // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { e_inverse(xy_x, xy_y, lp_lon, lp_lat, par, this->m_proj_parm); } static inline std::string get_name() { return "aeqd_e"; } }; template struct base_aeqd_e_guam { par_aeqd m_proj_parm; // FORWARD(e_guam_fwd) Guam elliptical // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { e_guam_fwd(lp_lon, lp_lat, xy_x, xy_y, par, this->m_proj_parm); } // INVERSE(e_guam_inv) Guam elliptical // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { e_guam_inv(xy_x, xy_y, lp_lon, lp_lat, par, this->m_proj_parm); } static inline std::string get_name() { return "aeqd_e_guam"; } }; template struct base_aeqd_s { par_aeqd m_proj_parm; // FORWARD(s_forward) spherical // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { s_forward(lp_lon, lp_lat, xy_x, xy_y, par, this->m_proj_parm); } // INVERSE(s_inverse) spherical // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { s_inverse(xy_x, xy_y, lp_lon, lp_lat, par, this->m_proj_parm); } static inline std::string get_name() { return "aeqd_s"; } }; }} // namespace detail::aeqd #endif // doxygen /*! \brief Azimuthal Equidistant projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - lat_0: Latitude of origin (degrees) - guam (boolean) \par Example \image html ex_aeqd.gif */ template struct aeqd_e : public detail::aeqd::base_aeqd_e { template inline aeqd_e(Params const& params, Parameters & par) { detail::aeqd::setup_aeqd(params, par, this->m_proj_parm, false, false); } }; /*! \brief Azimuthal Equidistant projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - lat_0: Latitude of origin (degrees) - guam (boolean) \par Example \image html ex_aeqd.gif */ template struct aeqd_e_guam : public detail::aeqd::base_aeqd_e_guam { template inline aeqd_e_guam(Params const& params, Parameters & par) { detail::aeqd::setup_aeqd(params, par, this->m_proj_parm, false, true); } }; /*! \brief Azimuthal Equidistant projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - lat_0: Latitude of origin (degrees) - guam (boolean) \par Example \image html ex_aeqd.gif */ template struct aeqd_s : public detail::aeqd::base_aeqd_s { template inline aeqd_s(Params const& params, Parameters & par) { detail::aeqd::setup_aeqd(params, par, this->m_proj_parm, true, false); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection template struct static_projection_type { typedef static_wrapper_fi, P> type; }; template struct static_projection_type { typedef static_wrapper_fi < typename boost::mpl::if_c < boost::is_same < typename srs::spar::detail::tuples_find_if < BGP, //srs::par4::detail::is_guam srs::spar::detail::is_param::pred >::type, void >::value, aeqd_e, aeqd_e_guam >::type , P > type; }; BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_BEGIN(aeqd_entry) { bool const guam = pj_get_param_b(params, "guam", srs::dpar::guam); if (parameters.es && ! guam) return new dynamic_wrapper_fi, T, Parameters>(params, parameters); else if (parameters.es && guam) return new dynamic_wrapper_fi, T, Parameters>(params, parameters); else return new dynamic_wrapper_fi, T, Parameters>(params, parameters); } BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_END BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(aeqd_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(aeqd, aeqd_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_AEQD_HPP