// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019. // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 5.0.0 // Original copyright notice: // Purpose: Implementation of the aitoff (Aitoff) and wintri (Winkel Tripel) // projections. // Author: Gerald Evenden (1995) // Drazen Tutic, Lovro Gradiser (2015) - add inverse // Thomas Knudsen (2016) - revise/add regression tests // Copyright (c) 1995, Gerald Evenden // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_AITOFF_HPP #define BOOST_GEOMETRY_PROJECTIONS_AITOFF_HPP #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace aitoff { enum mode_type { mode_aitoff = 0, mode_winkel_tripel = 1 }; template struct par_aitoff { T cosphi1; mode_type mode; }; template struct base_aitoff_spheroid { par_aitoff m_proj_parm; // FORWARD(s_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { T c, d; if((d = acos(cos(lp_lat) * cos(c = 0.5 * lp_lon)))) {/* basic Aitoff */ xy_x = 2. * d * cos(lp_lat) * sin(c) * (xy_y = 1. / sin(d)); xy_y *= d * sin(lp_lat); } else xy_x = xy_y = 0.; if (this->m_proj_parm.mode == mode_winkel_tripel) { /* Winkel Tripel */ xy_x = (xy_x + lp_lon * this->m_proj_parm.cosphi1) * 0.5; xy_y = (xy_y + lp_lat) * 0.5; } } /*********************************************************************************** * * Inverse functions added by Drazen Tutic and Lovro Gradiser based on paper: * * I.Özbug Biklirici and Cengizhan Ipbüker. A General Algorithm for the Inverse * Transformation of Map Projections Using Jacobian Matrices. In Proceedings of the * Third International Symposium Mathematical & Computational Applications, * pages 175{182, Turkey, September 2002. * * Expected accuracy is defined by epsilon = 1e-12. Should be appropriate for * most applications of Aitoff and Winkel Tripel projections. * * Longitudes of 180W and 180E can be mixed in solution obtained. * * Inverse for Aitoff projection in poles is undefined, longitude value of 0 is assumed. * * Contact : dtutic@geof.hr * Date: 2015-02-16 * ************************************************************************************/ // INVERSE(s_inverse) sphere // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { static const T pi = detail::pi(); static const T two_pi = detail::two_pi(); static const T epsilon = 1e-12; int iter, max_iter = 10, round = 0, max_round = 20; T D, C, f1, f2, f1p, f1l, f2p, f2l, dp, dl, sl, sp, cp, cl, x, y; if ((fabs(xy_x) < epsilon) && (fabs(xy_y) < epsilon )) { lp_lat = 0.; lp_lon = 0.; return; } /* intial values for Newton-Raphson method */ lp_lat = xy_y; lp_lon = xy_x; do { iter = 0; do { sl = sin(lp_lon * 0.5); cl = cos(lp_lon * 0.5); sp = sin(lp_lat); cp = cos(lp_lat); D = cp * cl; C = 1. - D * D; D = acos(D) / math::pow(C, T(1.5)); f1 = 2. * D * C * cp * sl; f2 = D * C * sp; f1p = 2.* (sl * cl * sp * cp / C - D * sp * sl); f1l = cp * cp * sl * sl / C + D * cp * cl * sp * sp; f2p = sp * sp * cl / C + D * sl * sl * cp; f2l = 0.5 * (sp * cp * sl / C - D * sp * cp * cp * sl * cl); if (this->m_proj_parm.mode == mode_winkel_tripel) { /* Winkel Tripel */ f1 = 0.5 * (f1 + lp_lon * this->m_proj_parm.cosphi1); f2 = 0.5 * (f2 + lp_lat); f1p *= 0.5; f1l = 0.5 * (f1l + this->m_proj_parm.cosphi1); f2p = 0.5 * (f2p + 1.); f2l *= 0.5; } f1 -= xy_x; f2 -= xy_y; dl = (f2 * f1p - f1 * f2p) / (dp = f1p * f2l - f2p * f1l); dp = (f1 * f2l - f2 * f1l) / dp; dl = fmod(dl, pi); /* set to interval [-M_PI, M_PI] */ lp_lat -= dp; lp_lon -= dl; } while ((fabs(dp) > epsilon || fabs(dl) > epsilon) && (iter++ < max_iter)); if (lp_lat > two_pi) lp_lat -= 2.*(lp_lat-two_pi); /* correct if symmetrical solution for Aitoff */ if (lp_lat < -two_pi) lp_lat -= 2.*(lp_lat+two_pi); /* correct if symmetrical solution for Aitoff */ if ((fabs(fabs(lp_lat) - two_pi) < epsilon) && (!this->m_proj_parm.mode)) lp_lon = 0.; /* if pole in Aitoff, return longitude of 0 */ /* calculate x,y coordinates with solution obtained */ if((D = acos(cos(lp_lat) * cos(C = 0.5 * lp_lon))) != 0.0) {/* Aitoff */ x = 2. * D * cos(lp_lat) * sin(C) * (y = 1. / sin(D)); y *= D * sin(lp_lat); } else x = y = 0.; if (this->m_proj_parm.mode == mode_winkel_tripel) { /* Winkel Tripel */ x = (x + lp_lon * this->m_proj_parm.cosphi1) * 0.5; y = (y + lp_lat) * 0.5; } /* if too far from given values of x,y, repeat with better approximation of phi,lam */ } while (((fabs(xy_x-x) > epsilon) || (fabs(xy_y-y) > epsilon)) && (round++ < max_round)); if (iter == max_iter && round == max_round) { BOOST_THROW_EXCEPTION( projection_exception(error_non_convergent) ); //fprintf(stderr, "Warning: Accuracy of 1e-12 not reached. Last increments: dlat=%e and dlon=%e\n", dp, dl); } } static inline std::string get_name() { return "aitoff_spheroid"; } }; template inline void setup(Parameters& par) { par.es = 0.; } // Aitoff template inline void setup_aitoff(Parameters& par, par_aitoff& proj_parm) { proj_parm.mode = mode_aitoff; setup(par); } // Winkel Tripel template inline void setup_wintri(Params& params, Parameters& par, par_aitoff& proj_parm) { static const T two_div_pi = detail::two_div_pi(); T phi1; proj_parm.mode = mode_winkel_tripel; if (pj_param_r(params, "lat_1", srs::dpar::lat_1, phi1)) { if ((proj_parm.cosphi1 = cos(phi1)) == 0.) BOOST_THROW_EXCEPTION( projection_exception(error_lat_larger_than_90) ); } else /* 50d28' or phi1=acos(2/pi) */ proj_parm.cosphi1 = two_div_pi; setup(par); } }} // namespace detail::aitoff #endif // doxygen /*! \brief Aitoff projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Example \image html ex_aitoff.gif */ template struct aitoff_spheroid : public detail::aitoff::base_aitoff_spheroid { template inline aitoff_spheroid(Params const& , Parameters & par) { detail::aitoff::setup_aitoff(par, this->m_proj_parm); } }; /*! \brief Winkel Tripel projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - lat_1: Latitude of first standard parallel (degrees) \par Example \image html ex_wintri.gif */ template struct wintri_spheroid : public detail::aitoff::base_aitoff_spheroid { template inline wintri_spheroid(Params const& params, Parameters & par) { detail::aitoff::setup_wintri(params, par, this->m_proj_parm); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_aitoff, aitoff_spheroid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_wintri, wintri_spheroid) // Factory entry(s) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(aitoff_entry, aitoff_spheroid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(wintri_entry, wintri_spheroid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(aitoff_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(aitoff, aitoff_entry) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(wintri, wintri_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_AITOFF_HPP