// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019. // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 5.0.0 // Original copyright notice: // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_OB_TRAN_HPP #define BOOST_GEOMETRY_PROJECTIONS_OB_TRAN_HPP #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { // fwd declaration needed below template inline detail::dynamic_wrapper_b >* create_new(srs::detail::proj4_parameters const& params, projections::parameters const& parameters); template inline detail::dynamic_wrapper_b >* create_new(srs::dpar::parameters const& params, projections::parameters const& parameters); } // namespace detail namespace detail { namespace ob_tran { static const double tolerance = 1e-10; template inline Parameters o_proj_parameters(srs::detail::proj4_parameters const& params, Parameters const& par) { /* copy existing header into new */ Parameters pj = par; /* get name of projection to be translated */ pj.id = pj_get_param_s(params, "o_proj"); if (pj.id.is_unknown()) BOOST_THROW_EXCEPTION( projection_exception(error_no_rotation_proj) ); /* avoid endless recursion */ if( pj.id.name == "ob_tran") BOOST_THROW_EXCEPTION( projection_exception(error_failed_to_find_proj) ); // Commented out for consistency with Proj4 >= 5.0.0 /* force spherical earth */ //pj.one_es = pj.rone_es = 1.; //pj.es = pj.e = 0.; return pj; } template inline Parameters o_proj_parameters(srs::dpar::parameters const& params, Parameters const& par) { /* copy existing header into new */ Parameters pj = par; /* get name of projection to be translated */ typename srs::dpar::parameters::const_iterator it = pj_param_find(params, srs::dpar::o_proj); if (it != params.end()) pj.id = static_cast(it->template get_value()); else BOOST_THROW_EXCEPTION( projection_exception(error_no_rotation_proj) ); /* avoid endless recursion */ if( pj.id.id == srs::dpar::proj_ob_tran) BOOST_THROW_EXCEPTION( projection_exception(error_failed_to_find_proj) ); // Commented out for consistency with Proj4 >= 5.0.0 /* force spherical earth */ //pj.one_es = pj.rone_es = 1.; //pj.es = pj.e = 0.; return pj; } template inline Parameters o_proj_parameters(srs::spar::parameters const& /*params*/, Parameters const& par) { /* copy existing header into new */ Parameters pj = par; /* get name of projection to be translated */ typedef srs::spar::parameters params_type; typedef typename srs::spar::detail::tuples_find_if < params_type, srs::spar::detail::is_param_t::pred >::type o_proj_type; static const bool is_found = srs::spar::detail::tuples_is_found::value; BOOST_MPL_ASSERT_MSG((is_found), NO_ROTATION_PROJ, (params_type)); typedef typename o_proj_type::type proj_type; static const bool is_specialized = srs::spar::detail::proj_traits::is_specialized; BOOST_MPL_ASSERT_MSG((is_specialized), NO_ROTATION_PROJ, (params_type)); pj.id = srs::spar::detail::proj_traits::id; /* avoid endless recursion */ static const bool is_non_resursive = ! boost::is_same::value; BOOST_MPL_ASSERT_MSG((is_non_resursive), INVALID_O_PROJ_PARAMETER, (params_type)); // Commented out for consistency with Proj4 >= 5.0.0 /* force spherical earth */ //pj.one_es = pj.rone_es = 1.; //pj.es = pj.e = 0.; return pj; } // TODO: It's possible that the original Parameters could be used // instead of a copy in link. // But it's not possible with the current implementation of // dynamic_wrapper_b always storing params template struct par_ob_tran { template par_ob_tran(Params const& params, Parameters const& par) : link(projections::detail::create_new(params, o_proj_parameters(params, par))) { if (! link.get()) BOOST_THROW_EXCEPTION( projection_exception(error_unknown_projection_id) ); } inline void fwd(T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { link->fwd(link->params(), lp_lon, lp_lat, xy_x, xy_y); } inline void inv(T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { link->inv(link->params(), xy_x, xy_y, lp_lon, lp_lat); } boost::shared_ptr > link; T lamp; T cphip, sphip; }; template struct par_ob_tran_static { // this metafunction handles static error handling typedef typename srs::spar::detail::pick_o_proj_tag < StaticParameters >::type o_proj_tag; /* avoid endless recursion */ static const bool is_o_proj_not_ob_tran = ! boost::is_same::value; BOOST_MPL_ASSERT_MSG((is_o_proj_not_ob_tran), INVALID_O_PROJ_PARAMETER, (StaticParameters)); typedef typename projections::detail::static_projection_type < o_proj_tag, // Commented out for consistency with Proj4 >= 5.0.0 //srs_sphere_tag, // force spherical typename projections::detail::static_srs_tag::type, StaticParameters, T, Parameters >::type projection_type; par_ob_tran_static(StaticParameters const& params, Parameters const& par) : link(params, o_proj_parameters(params, par)) {} inline void fwd(T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { link.fwd(link.params(), lp_lon, lp_lat, xy_x, xy_y); } inline void inv(T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { link.inv(link.params(), xy_x, xy_y, lp_lon, lp_lat); } projection_type link; T lamp; T cphip, sphip; }; template inline void o_forward(T lp_lon, T lp_lat, T& xy_x, T& xy_y, Par const& proj_parm) { T coslam, sinphi, cosphi; coslam = cos(lp_lon); sinphi = sin(lp_lat); cosphi = cos(lp_lat); lp_lon = adjlon(aatan2(cosphi * sin(lp_lon), proj_parm.sphip * cosphi * coslam + proj_parm.cphip * sinphi) + proj_parm.lamp); lp_lat = aasin(proj_parm.sphip * sinphi - proj_parm.cphip * cosphi * coslam); proj_parm.fwd(lp_lon, lp_lat, xy_x, xy_y); } template inline void o_inverse(T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat, Par const& proj_parm) { T coslam, sinphi, cosphi; proj_parm.inv(xy_x, xy_y, lp_lon, lp_lat); if (lp_lon != HUGE_VAL) { coslam = cos(lp_lon -= proj_parm.lamp); sinphi = sin(lp_lat); cosphi = cos(lp_lat); lp_lat = aasin(proj_parm.sphip * sinphi + proj_parm.cphip * cosphi * coslam); lp_lon = aatan2(cosphi * sin(lp_lon), proj_parm.sphip * cosphi * coslam - proj_parm.cphip * sinphi); } } template inline void t_forward(T lp_lon, T lp_lat, T& xy_x, T& xy_y, Par const& proj_parm) { T cosphi, coslam; cosphi = cos(lp_lat); coslam = cos(lp_lon); lp_lon = adjlon(aatan2(cosphi * sin(lp_lon), sin(lp_lat)) + proj_parm.lamp); lp_lat = aasin(- cosphi * coslam); proj_parm.fwd(lp_lon, lp_lat, xy_x, xy_y); } template inline void t_inverse(T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat, Par const& proj_parm) { T cosphi, t; proj_parm.inv(xy_x, xy_y, lp_lon, lp_lat); if (lp_lon != HUGE_VAL) { cosphi = cos(lp_lat); t = lp_lon - proj_parm.lamp; lp_lon = aatan2(cosphi * sin(t), - sin(lp_lat)); lp_lat = aasin(cosphi * cos(t)); } } // General Oblique Transformation template inline T setup_ob_tran(Params const& params, Parameters & /*par*/, ProjParameters& proj_parm) { static const T half_pi = detail::half_pi(); T phip, alpha; // Commented out for consistency with Proj4 >= 5.0.0 //par.es = 0.; /* force to spherical */ // proj_parm.link should be created at this point if (pj_param_r(params, "o_alpha", srs::dpar::o_alpha, alpha)) { T lamc, phic; lamc = pj_get_param_r(params, "o_lon_c", srs::dpar::o_lon_c); phic = pj_get_param_r(params, "o_lat_c", srs::dpar::o_lat_c); //alpha = pj_get_param_r(par.params, "o_alpha"); if (fabs(fabs(phic) - half_pi) <= tolerance) BOOST_THROW_EXCEPTION( projection_exception(error_lat_0_or_alpha_eq_90) ); proj_parm.lamp = lamc + aatan2(-cos(alpha), -sin(alpha) * sin(phic)); phip = aasin(cos(phic) * sin(alpha)); } else if (pj_param_r(params, "o_lat_p", srs::dpar::o_lat_p, phip)) { /* specified new pole */ proj_parm.lamp = pj_get_param_r(params, "o_lon_p", srs::dpar::o_lon_p); //phip = pj_param_r(par.params, "o_lat_p"); } else { /* specified new "equator" points */ T lam1, lam2, phi1, phi2, con; lam1 = pj_get_param_r(params, "o_lon_1", srs::dpar::o_lon_1); phi1 = pj_get_param_r(params, "o_lat_1", srs::dpar::o_lat_1); lam2 = pj_get_param_r(params, "o_lon_2", srs::dpar::o_lon_2); phi2 = pj_get_param_r(params, "o_lat_2", srs::dpar::o_lat_2); if (fabs(phi1 - phi2) <= tolerance || (con = fabs(phi1)) <= tolerance || fabs(con - half_pi) <= tolerance || fabs(fabs(phi2) - half_pi) <= tolerance) BOOST_THROW_EXCEPTION( projection_exception(error_lat_1_or_2_zero_or_90) ); proj_parm.lamp = atan2(cos(phi1) * sin(phi2) * cos(lam1) - sin(phi1) * cos(phi2) * cos(lam2), sin(phi1) * cos(phi2) * sin(lam2) - cos(phi1) * sin(phi2) * sin(lam1)); phip = atan(-cos(proj_parm.lamp - lam1) / tan(phi1)); } if (fabs(phip) > tolerance) { /* oblique */ proj_parm.cphip = cos(phip); proj_parm.sphip = sin(phip); } else { /* transverse */ } // TODO: /* Support some rather speculative test cases, where the rotated projection */ /* is actually latlong. We do not want scaling in that case... */ //if (proj_parm.link...mutable_parameters().right==PJ_IO_UNITS_ANGULAR) // par.right = PJ_IO_UNITS_PROJECTED; // return phip to choose model return phip; } template struct base_ob_tran_oblique { par_ob_tran m_proj_parm; inline base_ob_tran_oblique(par_ob_tran const& proj_parm) : m_proj_parm(proj_parm) {} // FORWARD(o_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { // NOTE: Parameters ignored, m_proj_parm.link has a copy o_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } // INVERSE(o_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { // NOTE: Parameters ignored, m_proj_parm.link has a copy o_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } static inline std::string get_name() { return "ob_tran_oblique"; } }; template struct base_ob_tran_transverse { par_ob_tran m_proj_parm; inline base_ob_tran_transverse(par_ob_tran const& proj_parm) : m_proj_parm(proj_parm) {} // FORWARD(t_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { // NOTE: Parameters ignored, m_proj_parm.link has a copy t_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } // INVERSE(t_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { // NOTE: Parameters ignored, m_proj_parm.link has a copy t_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } static inline std::string get_name() { return "ob_tran_transverse"; } }; template struct base_ob_tran_static { par_ob_tran_static m_proj_parm; bool m_is_oblique; inline base_ob_tran_static(StaticParameters const& params, Parameters const& par) : m_proj_parm(params, par) {} // FORWARD(o_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { // NOTE: Parameters ignored, m_proj_parm.link has a copy if (m_is_oblique) { o_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } else { t_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } } // INVERSE(o_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { // NOTE: Parameters ignored, m_proj_parm.link has a copy if (m_is_oblique) { o_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } else { t_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } } static inline std::string get_name() { return "ob_tran"; } }; }} // namespace detail::ob_tran #endif // doxygen /*! \brief General Oblique Transformation projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - o_proj (string) - Plus projection parameters - o_lat_p (degrees) - o_lon_p (degrees) - New pole - o_alpha: Alpha (degrees) - o_lon_c (degrees) - o_lat_c (degrees) - o_lon_1 (degrees) - o_lat_1: Latitude of first standard parallel (degrees) - o_lon_2 (degrees) - o_lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_ob_tran.gif */ template struct ob_tran_oblique : public detail::ob_tran::base_ob_tran_oblique { template inline ob_tran_oblique(Params const& , Parameters const& , detail::ob_tran::par_ob_tran const& proj_parm) : detail::ob_tran::base_ob_tran_oblique(proj_parm) { // already done //detail::ob_tran::setup_ob_tran(this->m_par, this->m_proj_parm); } }; /*! \brief General Oblique Transformation projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - o_proj (string) - Plus projection parameters - o_lat_p (degrees) - o_lon_p (degrees) - New pole - o_alpha: Alpha (degrees) - o_lon_c (degrees) - o_lat_c (degrees) - o_lon_1 (degrees) - o_lat_1: Latitude of first standard parallel (degrees) - o_lon_2 (degrees) - o_lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_ob_tran.gif */ template struct ob_tran_transverse : public detail::ob_tran::base_ob_tran_transverse { template inline ob_tran_transverse(Params const& , Parameters const& , detail::ob_tran::par_ob_tran const& proj_parm) : detail::ob_tran::base_ob_tran_transverse(proj_parm) { // already done //detail::ob_tran::setup_ob_tran(this->m_par, this->m_proj_parm); } }; /*! \brief General Oblique Transformation projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - o_proj (string) - Plus projection parameters - o_lat_p (degrees) - o_lon_p (degrees) - New pole - o_alpha: Alpha (degrees) - o_lon_c (degrees) - o_lat_c (degrees) - o_lon_1 (degrees) - o_lat_1: Latitude of first standard parallel (degrees) - o_lon_2 (degrees) - o_lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_ob_tran.gif */ template struct ob_tran_static : public detail::ob_tran::base_ob_tran_static { inline ob_tran_static(StaticParameters const& params, Parameters const& par) : detail::ob_tran::base_ob_tran_static(params, par) { T phip = detail::ob_tran::setup_ob_tran(params, par, this->m_proj_parm); this->m_is_oblique = fabs(phip) > detail::ob_tran::tolerance; } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection template struct static_projection_type { typedef static_wrapper_fi, P> type; }; template struct static_projection_type { typedef static_wrapper_fi, P> type; }; // Factory entry(s) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_BEGIN(ob_tran_entry) { Parameters parameters_copy = parameters; detail::ob_tran::par_ob_tran proj_parm(params, parameters_copy); T phip = detail::ob_tran::setup_ob_tran(params, parameters_copy, proj_parm); if (fabs(phip) > detail::ob_tran::tolerance) return new dynamic_wrapper_fi, T, Parameters>(params, parameters_copy, proj_parm); else return new dynamic_wrapper_fi, T, Parameters>(params, parameters_copy, proj_parm); } BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_END BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(ob_tran_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(ob_tran, ob_tran_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_OB_TRAN_HPP