// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019. // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 5.0.0 // Original copyright notice: // Copyright (c) 2003, 2006 Gerald I. Evenden // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_ROUSS_HPP #define BOOST_GEOMETRY_PROJECTIONS_ROUSS_HPP #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace rouss { template struct par_rouss { T s0; T A1, A2, A3, A4, A5, A6; T B1, B2, B3, B4, B5, B6, B7, B8; T C1, C2, C3, C4, C5, C6, C7, C8; T D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11; mdist en; }; template struct base_rouss_ellipsoid { par_rouss m_proj_parm; // FORWARD(e_forward) ellipsoid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { T s, al, cp, sp, al2, s2; cp = cos(lp_lat); sp = sin(lp_lat); s = proj_mdist(lp_lat, sp, cp, this->m_proj_parm.en) - this->m_proj_parm.s0; s2 = s * s; al = lp_lon * cp / sqrt(1. - par.es * sp * sp); al2 = al * al; xy_x = par.k0 * al*(1.+s2*(this->m_proj_parm.A1+s2*this->m_proj_parm.A4)-al2*(this->m_proj_parm.A2+s*this->m_proj_parm.A3+s2*this->m_proj_parm.A5 +al2*this->m_proj_parm.A6)); xy_y = par.k0 * (al2*(this->m_proj_parm.B1+al2*this->m_proj_parm.B4)+ s*(1.+al2*(this->m_proj_parm.B3-al2*this->m_proj_parm.B6)+s2*(this->m_proj_parm.B2+s2*this->m_proj_parm.B8)+ s*al2*(this->m_proj_parm.B5+s*this->m_proj_parm.B7))); } // INVERSE(e_inverse) ellipsoid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { T s, al, x = xy_x / par.k0, y = xy_y / par.k0, x2, y2; x2 = x * x; y2 = y * y; al = x*(1.-this->m_proj_parm.C1*y2+x2*(this->m_proj_parm.C2+this->m_proj_parm.C3*y-this->m_proj_parm.C4*x2+this->m_proj_parm.C5*y2-this->m_proj_parm.C7*x2*y) +y2*(this->m_proj_parm.C6*y2-this->m_proj_parm.C8*x2*y)); s = this->m_proj_parm.s0 + y*(1.+y2*(-this->m_proj_parm.D2+this->m_proj_parm.D8*y2))+ x2*(-this->m_proj_parm.D1+y*(-this->m_proj_parm.D3+y*(-this->m_proj_parm.D5+y*(-this->m_proj_parm.D7+y*this->m_proj_parm.D11)))+ x2*(this->m_proj_parm.D4+y*(this->m_proj_parm.D6+y*this->m_proj_parm.D10)-x2*this->m_proj_parm.D9)); lp_lat=proj_inv_mdist(s, this->m_proj_parm.en); s = sin(lp_lat); lp_lon=al * sqrt(1. - par.es * s * s)/cos(lp_lat); } static inline std::string get_name() { return "rouss_ellipsoid"; } }; // Roussilhe Stereographic template inline void setup_rouss(Parameters const& par, par_rouss& proj_parm) { T N0, es2, t, t2, R_R0_2, R_R0_4; if (!proj_mdist_ini(par.es, proj_parm.en)) BOOST_THROW_EXCEPTION( projection_exception(0) ); es2 = sin(par.phi0); proj_parm.s0 = proj_mdist(par.phi0, es2, cos(par.phi0), proj_parm.en); t = 1. - (es2 = par.es * es2 * es2); N0 = 1./sqrt(t); R_R0_2 = t * t / par.one_es; R_R0_4 = R_R0_2 * R_R0_2; t = tan(par.phi0); t2 = t * t; proj_parm.C1 = proj_parm.A1 = R_R0_2 / 4.; proj_parm.C2 = proj_parm.A2 = R_R0_2 * (2 * t2 - 1. - 2. * es2) / 12.; proj_parm.A3 = R_R0_2 * t * (1. + 4. * t2)/ ( 12. * N0); proj_parm.A4 = R_R0_4 / 24.; proj_parm.A5 = R_R0_4 * ( -1. + t2 * (11. + 12. * t2))/24.; proj_parm.A6 = R_R0_4 * ( -2. + t2 * (11. - 2. * t2))/240.; proj_parm.B1 = t / (2. * N0); proj_parm.B2 = R_R0_2 / 12.; proj_parm.B3 = R_R0_2 * (1. + 2. * t2 - 2. * es2)/4.; proj_parm.B4 = R_R0_2 * t * (2. - t2)/(24. * N0); proj_parm.B5 = R_R0_2 * t * (5. + 4.* t2)/(8. * N0); proj_parm.B6 = R_R0_4 * (-2. + t2 * (-5. + 6. * t2))/48.; proj_parm.B7 = R_R0_4 * (5. + t2 * (19. + 12. * t2))/24.; proj_parm.B8 = R_R0_4 / 120.; proj_parm.C3 = R_R0_2 * t * (1. + t2)/(3. * N0); proj_parm.C4 = R_R0_4 * (-3. + t2 * (34. + 22. * t2))/240.; proj_parm.C5 = R_R0_4 * (4. + t2 * (13. + 12. * t2))/24.; proj_parm.C6 = R_R0_4 / 16.; proj_parm.C7 = R_R0_4 * t * (11. + t2 * (33. + t2 * 16.))/(48. * N0); proj_parm.C8 = R_R0_4 * t * (1. + t2 * 4.)/(36. * N0); proj_parm.D1 = t / (2. * N0); proj_parm.D2 = R_R0_2 / 12.; proj_parm.D3 = R_R0_2 * (2 * t2 + 1. - 2. * es2) / 4.; proj_parm.D4 = R_R0_2 * t * (1. + t2)/(8. * N0); proj_parm.D5 = R_R0_2 * t * (1. + t2 * 2.)/(4. * N0); proj_parm.D6 = R_R0_4 * (1. + t2 * (6. + t2 * 6.))/16.; proj_parm.D7 = R_R0_4 * t2 * (3. + t2 * 4.)/8.; proj_parm.D8 = R_R0_4 / 80.; proj_parm.D9 = R_R0_4 * t * (-21. + t2 * (178. - t2 * 26.))/720.; proj_parm.D10 = R_R0_4 * t * (29. + t2 * (86. + t2 * 48.))/(96. * N0); proj_parm.D11 = R_R0_4 * t * (37. + t2 * 44.)/(96. * N0); } }} // namespace detail::rouss #endif // doxygen /*! \brief Roussilhe Stereographic projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Ellipsoid \par Example \image html ex_rouss.gif */ template struct rouss_ellipsoid : public detail::rouss::base_rouss_ellipsoid { template inline rouss_ellipsoid(Params const& , Parameters const& par) { detail::rouss::setup_rouss(par, this->m_proj_parm); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_rouss, rouss_ellipsoid) // Factory entry(s) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(rouss_entry, rouss_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(rouss_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(rouss, rouss_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_ROUSS_HPP