// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019. // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 5.0.0 // Original copyright notice: // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_STERE_HPP #define BOOST_GEOMETRY_PROJECTIONS_STERE_HPP #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace stere { static const double epsilon10 = 1.e-10; static const double tolerance = 1.e-8; static const int n_iter = 8; static const double conv_tolerance = 1.e-10; enum mode_type { s_pole = 0, n_pole = 1, obliq = 2, equit = 3 }; template struct par_stere { T phits; T sinX1; T cosX1; T akm1; mode_type mode; }; template inline T ssfn_(T const& phit, T sinphi, T const& eccen) { static const T half_pi = detail::half_pi(); sinphi *= eccen; return (tan (.5 * (half_pi + phit)) * math::pow((T(1) - sinphi) / (T(1) + sinphi), T(0.5) * eccen)); } template struct base_stere_ellipsoid { par_stere m_proj_parm; // FORWARD(e_forward) ellipsoid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const { static const T half_pi = detail::half_pi(); T coslam, sinlam, sinX=0.0, cosX=0.0, X, A = 0.0, sinphi; coslam = cos(lp_lon); sinlam = sin(lp_lon); sinphi = sin(lp_lat); if (this->m_proj_parm.mode == obliq || this->m_proj_parm.mode == equit) { sinX = sin(X = 2. * atan(ssfn_(lp_lat, sinphi, par.e)) - half_pi); cosX = cos(X); } switch (this->m_proj_parm.mode) { case obliq: A = this->m_proj_parm.akm1 / (this->m_proj_parm.cosX1 * (1. + this->m_proj_parm.sinX1 * sinX + this->m_proj_parm.cosX1 * cosX * coslam)); xy_y = A * (this->m_proj_parm.cosX1 * sinX - this->m_proj_parm.sinX1 * cosX * coslam); goto xmul; /* but why not just xy.x = A * cosX; break; ? */ case equit: // TODO: calculate denominator once /* avoid zero division */ if (1. + cosX * coslam == 0.0) { xy_y = HUGE_VAL; } else { A = this->m_proj_parm.akm1 / (1. + cosX * coslam); xy_y = A * sinX; } xmul: xy_x = A * cosX; break; case s_pole: lp_lat = -lp_lat; coslam = - coslam; sinphi = -sinphi; BOOST_FALLTHROUGH; case n_pole: xy_x = this->m_proj_parm.akm1 * pj_tsfn(lp_lat, sinphi, par.e); xy_y = - xy_x * coslam; break; } xy_x = xy_x * sinlam; } // INVERSE(e_inverse) ellipsoid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const { static const T half_pi = detail::half_pi(); T cosphi, sinphi, tp=0.0, phi_l=0.0, rho, halfe=0.0, halfpi=0.0; int i; rho = boost::math::hypot(xy_x, xy_y); switch (this->m_proj_parm.mode) { case obliq: case equit: cosphi = cos( tp = 2. * atan2(rho * this->m_proj_parm.cosX1 , this->m_proj_parm.akm1) ); sinphi = sin(tp); if( rho == 0.0 ) phi_l = asin(cosphi * this->m_proj_parm.sinX1); else phi_l = asin(cosphi * this->m_proj_parm.sinX1 + (xy_y * sinphi * this->m_proj_parm.cosX1 / rho)); tp = tan(.5 * (half_pi + phi_l)); xy_x *= sinphi; xy_y = rho * this->m_proj_parm.cosX1 * cosphi - xy_y * this->m_proj_parm.sinX1* sinphi; halfpi = half_pi; halfe = .5 * par.e; break; case n_pole: xy_y = -xy_y; BOOST_FALLTHROUGH; case s_pole: phi_l = half_pi - 2. * atan(tp = - rho / this->m_proj_parm.akm1); halfpi = -half_pi; halfe = -.5 * par.e; break; } for (i = n_iter; i--; phi_l = lp_lat) { sinphi = par.e * sin(phi_l); lp_lat = T(2) * atan(tp * math::pow((T(1)+sinphi)/(T(1)-sinphi), halfe)) - halfpi; if (fabs(phi_l - lp_lat) < conv_tolerance) { if (this->m_proj_parm.mode == s_pole) lp_lat = -lp_lat; lp_lon = (xy_x == 0. && xy_y == 0.) ? 0. : atan2(xy_x, xy_y); return; } } BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); } static inline std::string get_name() { return "stere_ellipsoid"; } }; template struct base_stere_spheroid { par_stere m_proj_parm; // FORWARD(s_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& , T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const { static const T fourth_pi = detail::fourth_pi(); static const T half_pi = detail::half_pi(); T sinphi, cosphi, coslam, sinlam; sinphi = sin(lp_lat); cosphi = cos(lp_lat); coslam = cos(lp_lon); sinlam = sin(lp_lon); switch (this->m_proj_parm.mode) { case equit: xy_y = 1. + cosphi * coslam; goto oblcon; case obliq: xy_y = 1. + this->m_proj_parm.sinX1 * sinphi + this->m_proj_parm.cosX1 * cosphi * coslam; oblcon: if (xy_y <= epsilon10) { BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); } xy_x = (xy_y = this->m_proj_parm.akm1 / xy_y) * cosphi * sinlam; xy_y *= (this->m_proj_parm.mode == equit) ? sinphi : this->m_proj_parm.cosX1 * sinphi - this->m_proj_parm.sinX1 * cosphi * coslam; break; case n_pole: coslam = - coslam; lp_lat = - lp_lat; BOOST_FALLTHROUGH; case s_pole: if (fabs(lp_lat - half_pi) < tolerance) { BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); } xy_x = sinlam * ( xy_y = this->m_proj_parm.akm1 * tan(fourth_pi + .5 * lp_lat) ); xy_y *= coslam; break; } } // INVERSE(s_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T const& xy_x, T xy_y, T& lp_lon, T& lp_lat) const { T c, rh, sinc, cosc; sinc = sin(c = 2. * atan((rh = boost::math::hypot(xy_x, xy_y)) / this->m_proj_parm.akm1)); cosc = cos(c); lp_lon = 0.; switch (this->m_proj_parm.mode) { case equit: if (fabs(rh) <= epsilon10) lp_lat = 0.; else lp_lat = asin(xy_y * sinc / rh); if (cosc != 0. || xy_x != 0.) lp_lon = atan2(xy_x * sinc, cosc * rh); break; case obliq: if (fabs(rh) <= epsilon10) lp_lat = par.phi0; else lp_lat = asin(cosc * this->m_proj_parm.sinX1 + xy_y * sinc * this->m_proj_parm.cosX1 / rh); if ((c = cosc - this->m_proj_parm.sinX1 * sin(lp_lat)) != 0. || xy_x != 0.) lp_lon = atan2(xy_x * sinc * this->m_proj_parm.cosX1, c * rh); break; case n_pole: xy_y = -xy_y; BOOST_FALLTHROUGH; case s_pole: if (fabs(rh) <= epsilon10) lp_lat = par.phi0; else lp_lat = asin(this->m_proj_parm.mode == s_pole ? - cosc : cosc); lp_lon = (xy_x == 0. && xy_y == 0.) ? 0. : atan2(xy_x, xy_y); break; } } static inline std::string get_name() { return "stere_spheroid"; } }; template inline void setup(Parameters const& par, par_stere& proj_parm) /* general initialization */ { static const T fourth_pi = detail::fourth_pi(); static const T half_pi = detail::half_pi(); T t; if (fabs((t = fabs(par.phi0)) - half_pi) < epsilon10) proj_parm.mode = par.phi0 < 0. ? s_pole : n_pole; else proj_parm.mode = t > epsilon10 ? obliq : equit; proj_parm.phits = fabs(proj_parm.phits); if (par.es != 0.0) { T X; switch (proj_parm.mode) { case n_pole: case s_pole: if (fabs(proj_parm.phits - half_pi) < epsilon10) proj_parm.akm1 = 2. * par.k0 / sqrt(math::pow(T(1)+par.e,T(1)+par.e)*math::pow(T(1)-par.e,T(1)-par.e)); else { proj_parm.akm1 = cos(proj_parm.phits) / pj_tsfn(proj_parm.phits, t = sin(proj_parm.phits), par.e); t *= par.e; proj_parm.akm1 /= sqrt(1. - t * t); } break; case equit: case obliq: t = sin(par.phi0); X = 2. * atan(ssfn_(par.phi0, t, par.e)) - half_pi; t *= par.e; proj_parm.akm1 = 2. * par.k0 * cos(par.phi0) / sqrt(1. - t * t); proj_parm.sinX1 = sin(X); proj_parm.cosX1 = cos(X); break; } } else { switch (proj_parm.mode) { case obliq: proj_parm.sinX1 = sin(par.phi0); proj_parm.cosX1 = cos(par.phi0); BOOST_FALLTHROUGH; case equit: proj_parm.akm1 = 2. * par.k0; break; case s_pole: case n_pole: proj_parm.akm1 = fabs(proj_parm.phits - half_pi) >= epsilon10 ? cos(proj_parm.phits) / tan(fourth_pi - .5 * proj_parm.phits) : 2. * par.k0 ; break; } } } // Stereographic template inline void setup_stere(Params const& params, Parameters const& par, par_stere& proj_parm) { static const T half_pi = detail::half_pi(); if (! pj_param_r(params, "lat_ts", srs::dpar::lat_ts, proj_parm.phits)) proj_parm.phits = half_pi; setup(par, proj_parm); } // Universal Polar Stereographic template inline void setup_ups(Params const& params, Parameters& par, par_stere& proj_parm) { static const T half_pi = detail::half_pi(); /* International Ellipsoid */ par.phi0 = pj_get_param_b(params, "south", srs::dpar::south) ? -half_pi: half_pi; if (par.es == 0.0) { BOOST_THROW_EXCEPTION( projection_exception(error_ellipsoid_use_required) ); } par.k0 = .994; par.x0 = 2000000.; par.y0 = 2000000.; proj_parm.phits = half_pi; par.lam0 = 0.; setup(par, proj_parm); } }} // namespace detail::stere #endif // doxygen /*! \brief Stereographic projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - lat_ts: Latitude of true scale (degrees) \par Example \image html ex_stere.gif */ template struct stere_ellipsoid : public detail::stere::base_stere_ellipsoid { template inline stere_ellipsoid(Params const& params, Parameters const& par) { detail::stere::setup_stere(params, par, this->m_proj_parm); } }; /*! \brief Stereographic projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - lat_ts: Latitude of true scale (degrees) \par Example \image html ex_stere.gif */ template struct stere_spheroid : public detail::stere::base_stere_spheroid { template inline stere_spheroid(Params const& params, Parameters const& par) { detail::stere::setup_stere(params, par, this->m_proj_parm); } }; /*! \brief Universal Polar Stereographic projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - south: Denotes southern hemisphere UTM zone (boolean) \par Example \image html ex_ups.gif */ template struct ups_ellipsoid : public detail::stere::base_stere_ellipsoid { template inline ups_ellipsoid(Params const& params, Parameters & par) { detail::stere::setup_ups(params, par, this->m_proj_parm); } }; /*! \brief Universal Polar Stereographic projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Azimuthal - Spheroid - Ellipsoid \par Projection parameters - south: Denotes southern hemisphere UTM zone (boolean) \par Example \image html ex_ups.gif */ template struct ups_spheroid : public detail::stere::base_stere_spheroid { template inline ups_spheroid(Params const& params, Parameters & par) { detail::stere::setup_ups(params, par, this->m_proj_parm); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_stere, stere_spheroid, stere_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_ups, ups_spheroid, ups_ellipsoid) // Factory entry(s) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(stere_entry, stere_spheroid, stere_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(ups_entry, ups_spheroid, ups_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(stere_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(stere, stere_entry) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(ups, ups_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_STERE_HPP