transform_iterator_test.cpp 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. // (C) Copyright Jeremy Siek 2002.
  2. // Distributed under the Boost Software License, Version 1.0. (See
  3. // accompanying file LICENSE_1_0.txt or copy at
  4. // http://www.boost.org/LICENSE_1_0.txt)
  5. // Revision History
  6. // 22 Nov 2002 Thomas Witt
  7. // Added interoperability check.
  8. // 28 Oct 2002 Jeremy Siek
  9. // Updated for new iterator adaptors.
  10. // 08 Mar 2001 Jeremy Siek
  11. // Moved test of transform iterator into its own file. It to
  12. // to be in iterator_adaptor_test.cpp.
  13. #include <boost/assert.hpp>
  14. #include <boost/config.hpp>
  15. #include <algorithm>
  16. #include <boost/iterator/transform_iterator.hpp>
  17. #include <boost/iterator/iterator_concepts.hpp>
  18. #include <boost/iterator/new_iterator_tests.hpp>
  19. #include <boost/pending/iterator_tests.hpp>
  20. #include <boost/bind.hpp>
  21. #include <boost/concept_check.hpp>
  22. #ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
  23. namespace boost { namespace detail
  24. {
  25. template<> struct function_object_result<int (*)(int)>
  26. {
  27. typedef int type;
  28. };
  29. }}
  30. #endif
  31. struct mult_functor {
  32. // Functors used with transform_iterator must be
  33. // DefaultConstructible, as the transform_iterator must be
  34. // DefaultConstructible to satisfy the requirements for
  35. // TrivialIterator.
  36. mult_functor() { }
  37. mult_functor(int aa) : a(aa) { }
  38. int operator()(int b) const { return a * b; }
  39. int a;
  40. };
  41. struct adaptable_mult_functor
  42. : mult_functor
  43. {
  44. typedef int result_type;
  45. typedef int argument_type;
  46. // Functors used with transform_iterator must be
  47. // DefaultConstructible, as the transform_iterator must be
  48. // DefaultConstructible to satisfy the requirements for
  49. // TrivialIterator.
  50. adaptable_mult_functor() { }
  51. adaptable_mult_functor(int aa) : mult_functor(aa) { }
  52. };
  53. struct const_select_first
  54. {
  55. typedef int const& result_type;
  56. int const& operator()(std::pair<int, int>const& p) const
  57. {
  58. return p.first;
  59. }
  60. };
  61. struct select_first
  62. : const_select_first // derivation to allow conversions
  63. {
  64. typedef int& result_type;
  65. int& operator()(std::pair<int, int>& p) const
  66. {
  67. return p.first;
  68. }
  69. };
  70. struct select_second
  71. {
  72. typedef int& result_type;
  73. int& operator()(std::pair<int, int>& p) const
  74. {
  75. return p.second;
  76. }
  77. };
  78. struct value_select_first
  79. {
  80. typedef int result_type;
  81. int operator()(std::pair<int, int>const& p) const
  82. {
  83. return p.first;
  84. }
  85. };
  86. int mult_2(int arg)
  87. {
  88. return arg*2;
  89. }
  90. struct polymorphic_mult_functor
  91. {
  92. //Implement result_of protocol
  93. template <class FArgs> struct result;
  94. template <class F, class T> struct result<const F(T )> {typedef T type;};
  95. template <class F, class T> struct result<const F(T& )> {typedef T type;};
  96. template <class F, class T> struct result<const F(const T&)> {typedef T type;};
  97. template <class F, class T> struct result<F(T )> {typedef void type;};
  98. template <class F, class T> struct result<F(T& )> {typedef void type;};
  99. template <class F, class T> struct result<F(const T&)> {typedef void type;};
  100. template <class T>
  101. T operator()(const T& _arg) const {return _arg*2;}
  102. template <class T>
  103. void operator()(const T& _arg) { BOOST_ASSERT(0); }
  104. };
  105. int
  106. main()
  107. {
  108. const int N = 10;
  109. // Concept checks
  110. {
  111. typedef boost::transform_iterator<adaptable_mult_functor, int*> iter_t;
  112. typedef boost::transform_iterator<adaptable_mult_functor, int const*> c_iter_t;
  113. boost::function_requires< boost_concepts::InteroperableIteratorConcept<iter_t, c_iter_t> >();
  114. }
  115. // Test transform_iterator
  116. {
  117. int x[N], y[N];
  118. for (int k = 0; k < N; ++k)
  119. x[k] = k;
  120. std::copy(x, x + N, y);
  121. for (int k2 = 0; k2 < N; ++k2)
  122. x[k2] = x[k2] * 2;
  123. typedef boost::transform_iterator<adaptable_mult_functor, int*> iter_t;
  124. iter_t i(y, adaptable_mult_functor(2));
  125. boost::input_iterator_test(i, x[0], x[1]);
  126. boost::input_iterator_test(iter_t(&y[0], adaptable_mult_functor(2)), x[0], x[1]);
  127. boost::random_access_readable_iterator_test(i, N, x);
  128. }
  129. // Test transform_iterator non adaptable functor
  130. {
  131. int x[N], y[N];
  132. for (int k = 0; k < N; ++k)
  133. x[k] = k;
  134. std::copy(x, x + N, y);
  135. for (int k2 = 0; k2 < N; ++k2)
  136. x[k2] = x[k2] * 2;
  137. typedef boost::transform_iterator<mult_functor, int*, int> iter_t;
  138. iter_t i(y, mult_functor(2));
  139. boost::input_iterator_test(i, x[0], x[1]);
  140. boost::input_iterator_test(iter_t(&y[0], mult_functor(2)), x[0], x[1]);
  141. boost::random_access_readable_iterator_test(i, N, x);
  142. }
  143. // Test transform_iterator default argument handling
  144. {
  145. {
  146. typedef boost::transform_iterator<adaptable_mult_functor, int*, float> iter_t;
  147. BOOST_STATIC_ASSERT((boost::is_same<iter_t::reference, float>::value));
  148. BOOST_STATIC_ASSERT((boost::is_same<iter_t::value_type, float>::value));
  149. }
  150. {
  151. typedef boost::transform_iterator<adaptable_mult_functor, int*, boost::use_default, float> iter_t;
  152. BOOST_STATIC_ASSERT((boost::is_same<iter_t::reference, int>::value));
  153. BOOST_STATIC_ASSERT((boost::is_same<iter_t::value_type, float>::value));
  154. }
  155. {
  156. typedef boost::transform_iterator<adaptable_mult_functor, int*, float, double> iter_t;
  157. BOOST_STATIC_ASSERT((boost::is_same<iter_t::reference, float>::value));
  158. BOOST_STATIC_ASSERT((boost::is_same<iter_t::value_type, double>::value));
  159. }
  160. }
  161. // Test transform_iterator with function pointers
  162. {
  163. int x[N], y[N];
  164. for (int k = 0; k < N; ++k)
  165. x[k] = k;
  166. std::copy(x, x + N, y);
  167. for (int k2 = 0; k2 < N; ++k2)
  168. x[k2] = x[k2] * 2;
  169. boost::input_iterator_test(
  170. boost::make_transform_iterator(y, mult_2), x[0], x[1]);
  171. boost::input_iterator_test(
  172. boost::make_transform_iterator(&y[0], mult_2), x[0], x[1]);
  173. boost::random_access_readable_iterator_test(
  174. boost::make_transform_iterator(y, mult_2), N, x);
  175. }
  176. // Test transform_iterator as projection iterator
  177. {
  178. typedef std::pair<int, int> pair_t;
  179. int x[N];
  180. int y[N];
  181. pair_t values[N];
  182. for(int i = 0; i < N; ++i) {
  183. x[i] = i;
  184. y[i] = N - (i + 1);
  185. }
  186. std::copy(
  187. x
  188. , x + N
  189. , boost::make_transform_iterator((pair_t*)values, select_first())
  190. );
  191. std::copy(
  192. y
  193. , y + N
  194. , boost::make_transform_iterator((pair_t*)values, select_second())
  195. );
  196. boost::random_access_readable_iterator_test(
  197. boost::make_transform_iterator((pair_t*)values, value_select_first())
  198. , N
  199. , x
  200. );
  201. boost::random_access_readable_iterator_test(
  202. boost::make_transform_iterator((pair_t*)values, const_select_first())
  203. , N, x
  204. );
  205. boost::constant_lvalue_iterator_test(
  206. boost::make_transform_iterator((pair_t*)values, const_select_first()), x[0]);
  207. boost::non_const_lvalue_iterator_test(
  208. boost::make_transform_iterator((pair_t*)values, select_first()), x[0], 17);
  209. boost::const_nonconst_iterator_test(
  210. ++boost::make_transform_iterator((pair_t*)values, select_first())
  211. , boost::make_transform_iterator((pair_t*)values, const_select_first())
  212. );
  213. }
  214. // Test transform_iterator with polymorphic object function
  215. {
  216. int x[N], y[N];
  217. for (int k = 0; k < N; ++k)
  218. x[k] = k;
  219. std::copy(x, x + N, y);
  220. for (int k2 = 0; k2 < N; ++k2)
  221. x[k2] = x[k2] * 2;
  222. boost::input_iterator_test(
  223. boost::make_transform_iterator(y, polymorphic_mult_functor()), x[0], x[1]);
  224. boost::input_iterator_test(
  225. boost::make_transform_iterator(&y[0], polymorphic_mult_functor()), x[0], x[1]);
  226. boost::random_access_readable_iterator_test(
  227. boost::make_transform_iterator(y, polymorphic_mult_functor()), N, x);
  228. }
  229. return boost::report_errors();
  230. }