gradient.html 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html xmlns="http://www.w3.org/1999/xhtml">
  4. <head>
  5. <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
  6. <title>Tutorial: Image Gradient - Boost.GIL documentation</title>
  7. <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../_static/style.css" type="text/css" />
  9. <script type="text/javascript">
  10. var DOCUMENTATION_OPTIONS = {
  11. URL_ROOT: '../',
  12. VERSION: '',
  13. COLLAPSE_MODINDEX: false,
  14. FILE_SUFFIX: '.html'
  15. };
  16. </script>
  17. <script type="text/javascript" src="../_static/jquery.js"></script>
  18. <script type="text/javascript" src="../_static/underscore.js"></script>
  19. <script type="text/javascript" src="../_static/doctools.js"></script>
  20. <link rel="index" title="Index" href="../genindex.html" />
  21. <link rel="search" title="Search" href="../search.html" />
  22. <link rel="top" title="Boost.GIL documentation" href="../index.html" />
  23. <link rel="next" title="Naming Conventions" href="../naming.html" />
  24. <link rel="prev" title="Tutorial: Histogram" href="histogram.html" />
  25. </head>
  26. <body>
  27. <div class="header">
  28. <table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
  29. "header">
  30. <tr>
  31. <td valign="top" width="300">
  32. <h3><a href="../index.html"><img
  33. alt="C++ Boost" src="../_static/gil.png" border="0"></a></h3>
  34. </td>
  35. <td >
  36. <h1 align="center"><a href="../index.html"></a></h1>
  37. </td>
  38. <td>
  39. <div id="searchbox" style="display: none">
  40. <form class="search" action="../search.html" method="get">
  41. <input type="text" name="q" size="18" />
  42. <input type="submit" value="Search" />
  43. <input type="hidden" name="check_keywords" value="yes" />
  44. <input type="hidden" name="area" value="default" />
  45. </form>
  46. </div>
  47. <script type="text/javascript">$('#searchbox').show(0);</script>
  48. </td>
  49. </tr>
  50. </table>
  51. </div>
  52. <hr/>
  53. <div class="content">
  54. <div class="navbar" style="text-align:right;">
  55. <a class="prev" title="Tutorial: Histogram" href="histogram.html"><img src="../_static/prev.png" alt="prev"/></a>
  56. <a class="next" title="Naming Conventions" href="../naming.html"><img src="../_static/next.png" alt="next"/></a>
  57. </div>
  58. <div class="section" id="tutorial-image-gradient">
  59. <h1>Tutorial: Image Gradient</h1>
  60. <div class="contents local topic" id="contents">
  61. <ul class="simple">
  62. <li><a class="reference internal" href="#interface-and-glue-code" id="id1">Interface and Glue Code</a></li>
  63. <li><a class="reference internal" href="#first-implementation" id="id2">First Implementation</a></li>
  64. <li><a class="reference internal" href="#using-locators" id="id3">Using Locators</a></li>
  65. <li><a class="reference internal" href="#creating-a-generic-version-of-gil-algorithms" id="id4">Creating a Generic Version of GIL Algorithms</a></li>
  66. <li><a class="reference internal" href="#image-view-transformations" id="id5">Image View Transformations</a></li>
  67. <li><a class="reference internal" href="#d-pixel-iterators" id="id6">1D pixel iterators</a></li>
  68. <li><a class="reference internal" href="#stl-equivalent-algorithms" id="id7">STL Equivalent Algorithms</a></li>
  69. <li><a class="reference internal" href="#color-conversion" id="id8">Color Conversion</a></li>
  70. <li><a class="reference internal" href="#image" id="id9">Image</a></li>
  71. <li><a class="reference internal" href="#virtual-image-views" id="id10">Virtual Image Views</a></li>
  72. <li><a class="reference internal" href="#run-time-specified-images-and-image-views" id="id11">Run-Time Specified Images and Image Views</a></li>
  73. <li><a class="reference internal" href="#conclusion" id="id12">Conclusion</a></li>
  74. </ul>
  75. </div>
  76. <p>This comprehensive (and long) tutorial will walk you through an example of
  77. using GIL to compute the image gradients.</p>
  78. <p>We will start with some very simple and non-generic code and make it more
  79. generic as we go along. Let us start with a horizontal gradient and use the
  80. simplest possible approximation to a gradient - central difference.</p>
  81. <p>The gradient at pixel x can be approximated with the half-difference of its
  82. two neighboring pixels:</p>
  83. <div class="highlight-c++"><div class="highlight"><pre><span class="n">D</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">I</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">I</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span>
  84. </pre></div>
  85. </div>
  86. <p>For simplicity, we will also ignore the boundary cases - the pixels along the
  87. edges of the image for which one of the neighbors is not defined. The focus of
  88. this document is how to use GIL, not how to create a good gradient generation
  89. algorithm.</p>
  90. <div class="section" id="interface-and-glue-code">
  91. <h2><a class="toc-backref" href="#id1">Interface and Glue Code</a></h2>
  92. <p>Let us first start with 8-bit unsigned grayscale image as the input and 8-bit
  93. signed grayscale image as the output.</p>
  94. <p>Here is how the interface to our algorithm looks like:</p>
  95. <div class="highlight-cpp"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/gil.hpp&gt;</span><span class="cp"></span>
  96. <span class="k">using</span> <span class="k">namespace</span> <span class="n">boost</span><span class="o">::</span><span class="n">gil</span><span class="p">;</span>
  97. <span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  98. <span class="p">{</span>
  99. <span class="n">assert</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">()</span> <span class="o">==</span> <span class="n">dst</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
  100. <span class="p">...</span> <span class="c1">// compute the gradient</span>
  101. <span class="p">}</span>
  102. </pre></div>
  103. </div>
  104. <p><code class="docutils literal"><span class="pre">gray8c_view_t</span></code> is the type of the source image view - an 8-bit grayscale
  105. view, whose pixels are read-only (denoted by the &#8220;c&#8221;).</p>
  106. <p>The output is a grayscale view with a 8-bit signed (denoted by the &#8220;s&#8221;)
  107. integer channel type. See Appendix 1 for the complete convention GIL uses to
  108. name concrete types.</p>
  109. <p>GIL makes a distinction between an image and an image view.
  110. A GIL <strong>image view</strong>, is a shallow, lightweight view of a rectangular grid of
  111. pixels. It provides access to the pixels but does not own the pixels.
  112. Copy-constructing a view does not deep-copy the pixels. Image views do not
  113. propagate their constness to the pixels and should always be taken by a const
  114. reference. Whether a view is mutable or read-only (immutable) is a property of
  115. the view type.</p>
  116. <p>A GIL <cite>image</cite>, on the other hand, is a view with associated ownership.
  117. It is a container of pixels; its constructor/destructor allocates/deallocates
  118. the pixels, its copy-constructor performs deep-copy of the pixels and its
  119. <code class="docutils literal"><span class="pre">operator==</span></code> performs deep-compare of the pixels. Images also propagate
  120. their constness to their pixels - a constant reference to an image will not
  121. allow for modifying its pixels.</p>
  122. <p>Most GIL algorithms operate on image views; images are rarely
  123. needed. GIL&#8217;s design is very similar to that of the STL. The STL
  124. equivalent of GIL&#8217;s image is a container, like <code class="docutils literal"><span class="pre">std::vector</span></code>,
  125. whereas GIL&#8217;s image view corresponds to STL range, which is often
  126. represented with a pair of iterators. STL algorithms operate on
  127. ranges, just like GIL algorithms operate on image views.</p>
  128. <p>GIL&#8217;s image views can be constructed from raw data - the dimensions,
  129. the number of bytes per row and the pixels, which for chunky views are
  130. represented with one pointer. Here is how to provide the glue between
  131. your code and GIL:</p>
  132. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">ComputeXGradientGray8</span><span class="p">(</span>
  133. <span class="kt">unsigned</span> <span class="kt">char</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span>
  134. <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
  135. <span class="kt">signed</span> <span class="kt">char</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
  136. <span class="p">{</span>
  137. <span class="n">gray8c_view_t</span> <span class="n">src</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray8_pixel_t</span> <span class="k">const</span><span class="o">*</span><span class="p">)</span><span class="n">src_pixels</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
  138. <span class="n">gray8s_view_t</span> <span class="n">dst</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray8s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
  139. <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">dst</span><span class="p">);</span>
  140. <span class="p">}</span>
  141. </pre></div>
  142. </div>
  143. <p>This glue code is very fast and views are lightweight - in the above example
  144. the views have a size of 16 bytes. They consist of a pointer to the top left
  145. pixel and three integers - the width, height, and number of bytes per row.</p>
  146. </div>
  147. <div class="section" id="first-implementation">
  148. <h2><a class="toc-backref" href="#id2">First Implementation</a></h2>
  149. <p>Focusing on simplicity at the expense of speed, we can compute the horizontal
  150. gradient like this:</p>
  151. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  152. <span class="p">{</span>
  153. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  154. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  155. <span class="n">dst</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">src</span><span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="o">-</span> <span class="n">src</span><span class="p">(</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  156. <span class="p">}</span>
  157. </pre></div>
  158. </div>
  159. <p>We use image view&#8217;s <code class="docutils literal"><span class="pre">operator(x,y)</span></code> to get a reference to the pixel at a
  160. given location and we set it to the half-difference of its left and right
  161. neighbors. <code class="docutils literal"><span class="pre">operator()</span></code> returns a reference to a grayscale pixel.
  162. A grayscale pixel is convertible to its channel type (<code class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></code> for
  163. <code class="docutils literal"><span class="pre">src</span></code>) and it can be copy-constructed from a channel.
  164. (This is only true for grayscale pixels).</p>
  165. <p>While the above code is easy to read, it is not very fast, because the binary
  166. <code class="docutils literal"><span class="pre">operator()</span></code> computes the location of the pixel in a 2D grid, which involves
  167. addition and multiplication. Here is a faster version of the above:</p>
  168. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  169. <span class="p">{</span>
  170. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  171. <span class="p">{</span>
  172. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  173. <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  174. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="o">=</span><span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  175. <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  176. <span class="p">}</span>
  177. <span class="p">}</span>
  178. </pre></div>
  179. </div>
  180. <p>We use pixel iterators initialized at the beginning of each row. GIL&#8217;s
  181. iterators are Random Access Traversal iterators. If you are not
  182. familiar with random access iterators, think of them as if they were
  183. pointers. In fact, in the above example the two iterator types are raw
  184. C pointers and their <code class="docutils literal"><span class="pre">operator[]</span></code> is a fast pointer indexing
  185. operator.</p>
  186. <p>The code to compute gradient in the vertical direction is very
  187. similar:</p>
  188. <p>Instead of looping over the rows, we loop over each column and create a
  189. <code class="docutils literal"><span class="pre">y_iterator</span></code>, an iterator moving vertically. In this case a simple pointer
  190. cannot be used because the distance between two adjacent pixels equals the
  191. number of bytes in each row of the image. GIL uses here a special step
  192. iterator class whose size is 8 bytes - it contains a raw C pointer and a step.
  193. Its <code class="docutils literal"><span class="pre">operator[]</span></code> multiplies the index by its step.</p>
  194. <p>The above version of <code class="docutils literal"><span class="pre">y_gradient</span></code>, however, is much slower (easily an order
  195. of magnitude slower) than <code class="docutils literal"><span class="pre">x_gradient</span></code> because of the memory access pattern;
  196. traversing an image vertically results in lots of cache misses. A much more
  197. efficient and cache-friendly version will iterate over the columns in the inner
  198. loop:</p>
  199. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">y_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  200. <span class="p">{</span>
  201. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  202. <span class="p">{</span>
  203. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src1_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="o">-</span><span class="mi">1</span><span class="p">);</span>
  204. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src2_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="o">+</span><span class="mi">1</span><span class="p">);</span>
  205. <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  206. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  207. <span class="p">{</span>
  208. <span class="o">*</span><span class="n">dst_it</span> <span class="o">=</span> <span class="p">((</span><span class="o">*</span><span class="n">src1_it</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="o">*</span><span class="n">src2_it</span><span class="p">))</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  209. <span class="o">++</span><span class="n">dst_it</span><span class="p">;</span>
  210. <span class="o">++</span><span class="n">src1_it</span><span class="p">;</span>
  211. <span class="o">++</span><span class="n">src2_it</span><span class="p">;</span>
  212. <span class="p">}</span>
  213. <span class="p">}</span>
  214. <span class="p">}</span>
  215. </pre></div>
  216. </div>
  217. <p>This sample code also shows an alternative way of using pixel iterators -
  218. instead of <code class="docutils literal"><span class="pre">operator[]</span></code> one could use increments and dereferences.</p>
  219. </div>
  220. <div class="section" id="using-locators">
  221. <h2><a class="toc-backref" href="#id3">Using Locators</a></h2>
  222. <p>Unfortunately this cache-friendly version requires the extra hassle of
  223. maintaining two separate iterators in the source view. For every pixel, we
  224. want to access its neighbors above and below it. Such relative access can be
  225. done with GIL locators:</p>
  226. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">y_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  227. <span class="p">{</span>
  228. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span> <span class="n">src_loc</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">xy_at</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
  229. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  230. <span class="p">{</span>
  231. <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  232. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  233. <span class="p">{</span>
  234. <span class="p">(</span><span class="o">*</span><span class="n">dst_it</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_loc</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">-</span> <span class="n">src_loc</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">))</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  235. <span class="o">++</span><span class="n">dst_it</span><span class="p">;</span>
  236. <span class="o">++</span><span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">();</span> <span class="c1">// each dimension can be advanced separately</span>
  237. <span class="p">}</span>
  238. <span class="n">src_loc</span><span class="o">+=</span><span class="n">point</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="kt">ptrdiff_t</span><span class="o">&gt;</span><span class="p">(</span><span class="o">-</span><span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">(),</span> <span class="mi">1</span><span class="p">);</span> <span class="c1">// carriage return</span>
  239. <span class="p">}</span>
  240. <span class="p">}</span>
  241. </pre></div>
  242. </div>
  243. <p>The first line creates a locator pointing to the first pixel of the
  244. second row of the source view. A GIL pixel locator is very similar to
  245. an iterator, except that it can move both horizontally and
  246. vertically. <code class="docutils literal"><span class="pre">src_loc.x()</span></code> and <code class="docutils literal"><span class="pre">src_loc.y()</span></code> return references to a
  247. horizontal and a vertical iterator respectively, which can be used to
  248. move the locator along the desired dimension, as shown
  249. above. Additionally, the locator can be advanced in both dimensions
  250. simultaneously using its <code class="docutils literal"><span class="pre">operator+=</span></code> and <code class="docutils literal"><span class="pre">operator-=</span></code>. Similar to
  251. image views, locators provide binary <code class="docutils literal"><span class="pre">operator()</span></code> which returns a
  252. reference to a pixel with a relative offset to the current locator
  253. position. For example, <code class="docutils literal"><span class="pre">src_loc(0,1)</span></code> returns a reference to the
  254. neighbor below the current pixel. Locators are very lightweight
  255. objects - in the above example the locator has a size of 8 bytes - it
  256. consists of a raw pointer to the current pixel and an int indicating
  257. the number of bytes from one row to the next (which is the step when
  258. moving vertically). The call to <code class="docutils literal"><span class="pre">++src_loc.x()</span></code> corresponds to a
  259. single C pointer increment. However, the example above performs more
  260. computations than necessary. The code <code class="docutils literal"><span class="pre">src_loc(0,1)</span></code> has to compute
  261. the offset of the pixel in two dimensions, which is slow. Notice
  262. though that the offset of the two neighbors is the same, regardless of
  263. the pixel location. To improve the performance, GIL can cache and
  264. reuse this offset:</p>
  265. <div class="highlight-c++"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">y_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  266. <span class="p">{</span>
  267. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span> <span class="n">src_loc</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">xy_at</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
  268. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span><span class="o">::</span><span class="n">cached_location_t</span> <span class="n">above</span> <span class="o">=</span> <span class="n">src_loc</span><span class="p">.</span><span class="n">cache_location</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">);</span>
  269. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">xy_locator</span><span class="o">::</span><span class="n">cached_location_t</span> <span class="n">below</span> <span class="o">=</span> <span class="n">src_loc</span><span class="p">.</span><span class="n">cache_location</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">);</span>
  270. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  271. <span class="p">{</span>
  272. <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  273. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  274. <span class="p">{</span>
  275. <span class="p">(</span><span class="o">*</span><span class="n">dst_it</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_loc</span><span class="p">[</span><span class="n">above</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_loc</span><span class="p">[</span><span class="n">below</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  276. <span class="o">++</span><span class="n">dst_it</span><span class="p">;</span>
  277. <span class="o">++</span><span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">();</span>
  278. <span class="p">}</span>
  279. <span class="n">src_loc</span><span class="o">+=</span><span class="n">point</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="kt">ptrdiff_t</span><span class="o">&gt;</span><span class="p">(</span><span class="o">-</span><span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">(),</span> <span class="mi">1</span><span class="p">);</span>
  280. <span class="p">}</span>
  281. <span class="p">}</span>
  282. </pre></div>
  283. </div>
  284. <p>In this example <code class="docutils literal"><span class="pre">src_loc[above]</span></code> corresponds to a fast pointer indexing
  285. operation and the code is efficient.</p>
  286. </div>
  287. <div class="section" id="creating-a-generic-version-of-gil-algorithms">
  288. <h2><a class="toc-backref" href="#id4">Creating a Generic Version of GIL Algorithms</a></h2>
  289. <p>Let us make our <code class="docutils literal"><span class="pre">x_gradient</span></code> more generic. It should work with any image
  290. views, as long as they have the same number of channels. The gradient
  291. operation is to be computed for each channel independently.</p>
  292. <p>Here is how the new interface looks like:</p>
  293. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  294. <span class="kt">void</span> <span class="n">x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  295. <span class="p">{</span>
  296. <span class="n">gil_function_requires</span><span class="o">&lt;</span><span class="n">ImageViewConcept</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;</span> <span class="o">&gt;</span><span class="p">();</span>
  297. <span class="n">gil_function_requires</span><span class="o">&lt;</span><span class="n">MutableImageViewConcept</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;</span> <span class="o">&gt;</span><span class="p">();</span>
  298. <span class="n">gil_function_requires</span>
  299. <span class="o">&lt;</span>
  300. <span class="n">ColorSpacesCompatibleConcept</span>
  301. <span class="o">&lt;</span>
  302. <span class="k">typename</span> <span class="n">color_space_type</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">,</span>
  303. <span class="k">typename</span> <span class="n">color_space_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span>
  304. <span class="o">&gt;</span>
  305. <span class="o">&gt;</span><span class="p">();</span>
  306. <span class="p">...</span> <span class="c1">// compute the gradient</span>
  307. <span class="p">}</span>
  308. </pre></div>
  309. </div>
  310. <p>The new algorithm now takes the types of the input and output image
  311. views as template parameters. That allows using both built-in GIL
  312. image views, as well as any user-defined image view classes. The
  313. first three lines are optional; they use <code class="docutils literal"><span class="pre">boost::concept_check</span></code> to
  314. ensure that the two arguments are valid GIL image views, that the
  315. second one is mutable and that their color spaces are compatible
  316. (i.e. have the same set of channels).</p>
  317. <p>GIL does not require using its own built-in constructs. You are free
  318. to use your own channels, color spaces, iterators, locators, views and
  319. images. However, to work with the rest of GIL they have to satisfy a
  320. set of requirements; in other words, they have to e model the
  321. corresponding GIL _concept_. GIL&#8217;s concepts are defined in the user
  322. guide.</p>
  323. <p>One of the biggest drawbacks of using templates and generic
  324. programming in C++ is that compile errors can be very difficult to
  325. comprehend. This is a side-effect of the lack of early type
  326. checking - a generic argument may not satisfy the requirements of a
  327. function, but the incompatibility may be triggered deep into a nested
  328. call, in code unfamiliar and hardly related to the problem. GIL uses
  329. <code class="docutils literal"><span class="pre">boost::concept_check</span></code> to mitigate this problem. The above three
  330. lines of code check whether the template parameters are valid models
  331. of their corresponding concepts. If a model is incorrect, the compile
  332. error will be inside <code class="docutils literal"><span class="pre">gil_function_requires</span></code>, which is much closer
  333. to the problem and easier to track. Furthermore, such checks get
  334. compiled out and have zero performance overhead. The disadvantage of
  335. using concept checks is the sometimes severe impact they have on
  336. compile time. This is why GIL performs concept checks only in debug
  337. mode, and only if <code class="docutils literal"><span class="pre">BOOST_GIL_USE_CONCEPT_CHECK</span></code> is defined (off by
  338. default).</p>
  339. <p>The body of the generic function is very similar to that of the
  340. concrete one. The biggest difference is that we need to loop over the
  341. channels of the pixel and compute the gradient for each channel:</p>
  342. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  343. <span class="kt">void</span> <span class="n">x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  344. <span class="p">{</span>
  345. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  346. <span class="p">{</span>
  347. <span class="k">typename</span> <span class="n">SrcView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  348. <span class="k">typename</span> <span class="n">DstView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  349. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  350. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">c</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">c</span> <span class="o">&lt;</span> <span class="n">num_channels</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;::</span><span class="n">value</span><span class="p">;</span> <span class="o">++</span><span class="n">c</span><span class="p">)</span>
  351. <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="o">-</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  352. <span class="p">}</span>
  353. <span class="p">}</span>
  354. </pre></div>
  355. </div>
  356. <p>Having an explicit loop for each channel could be a performance problem.
  357. GIL allows us to abstract out such per-channel operations:</p>
  358. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">Out</span><span class="o">&gt;</span>
  359. <span class="k">struct</span> <span class="n">halfdiff_cast_channels</span>
  360. <span class="p">{</span>
  361. <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <span class="n">Out</span> <span class="k">operator</span><span class="p">()(</span><span class="n">T</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">in1</span><span class="p">,</span> <span class="n">T</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">in2</span><span class="p">)</span> <span class="k">const</span>
  362. <span class="p">{</span>
  363. <span class="k">return</span> <span class="n">Out</span><span class="p">((</span><span class="n">in1</span> <span class="o">-</span> <span class="n">in2</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">);</span>
  364. <span class="p">}</span>
  365. <span class="p">};</span>
  366. <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  367. <span class="kt">void</span> <span class="n">x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  368. <span class="p">{</span>
  369. <span class="k">typedef</span> <span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">dst_channel_t</span><span class="p">;</span>
  370. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  371. <span class="p">{</span>
  372. <span class="k">typename</span> <span class="n">SrcView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  373. <span class="k">typename</span> <span class="n">DstView</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  374. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span><span class="o">=</span><span class="mi">1</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">;</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  375. <span class="p">{</span>
  376. <span class="n">static_transform</span><span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">],</span> <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">],</span>
  377. <span class="n">halfdiff_cast_channels</span><span class="o">&lt;</span><span class="n">dst_channel_t</span><span class="o">&gt;</span><span class="p">());</span>
  378. <span class="p">}</span>
  379. <span class="p">}</span>
  380. <span class="p">}</span>
  381. </pre></div>
  382. </div>
  383. <p>The <code class="docutils literal"><span class="pre">static_transform</span></code> is an example of a channel-level GIL algorithm.
  384. Other such algorithms are <code class="docutils literal"><span class="pre">static_generate</span></code>, <code class="docutils literal"><span class="pre">static_fill</span></code> and
  385. <code class="docutils literal"><span class="pre">static_for_each</span></code>. They are the channel-level equivalents of STL
  386. <code class="docutils literal"><span class="pre">generate</span></code>, <code class="docutils literal"><span class="pre">transform</span></code>, <code class="docutils literal"><span class="pre">fill</span></code> and <code class="docutils literal"><span class="pre">for_each</span></code> respectively.
  387. GIL channel algorithms use static recursion to unroll the loops; they never
  388. loop over the channels explicitly.</p>
  389. <p>Note that sometimes modern compilers (at least Visual Studio 8) already unroll
  390. channel-level loops, such as the one above. However, another advantage of
  391. using GIL&#8217;s channel-level algorithms is that they pair the channels
  392. semantically, not based on their order in memory. For example, the above
  393. example will properly match an RGB source with a BGR destination.</p>
  394. <p>Here is how we can use our generic version with images of different types:</p>
  395. <div class="highlight-cpp"><div class="highlight"><pre><span class="c1">// Calling with 16-bit grayscale data</span>
  396. <span class="kt">void</span> <span class="nf">XGradientGray16_Gray32</span><span class="p">(</span>
  397. <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span>
  398. <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
  399. <span class="kt">signed</span> <span class="kt">int</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
  400. <span class="p">{</span>
  401. <span class="n">gray16c_view_t</span> <span class="n">src</span><span class="o">=</span><span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray16_pixel_t</span> <span class="k">const</span><span class="o">*</span><span class="p">)</span><span class="n">src_pixels</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
  402. <span class="n">gray32s_view_t</span> <span class="n">dst</span><span class="o">=</span><span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">gray32s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
  403. <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span><span class="n">dst</span><span class="p">);</span>
  404. <span class="p">}</span>
  405. <span class="c1">// Calling with 8-bit RGB data into 16-bit BGR</span>
  406. <span class="kt">void</span> <span class="nf">XGradientRGB8_BGR16</span><span class="p">(</span>
  407. <span class="kt">unsigned</span> <span class="kt">char</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span>
  408. <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
  409. <span class="kt">signed</span> <span class="kt">short</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
  410. <span class="p">{</span>
  411. <span class="n">rgb8c_view_t</span> <span class="n">src</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">rgb8_pixel_t</span> <span class="k">const</span><span class="o">*</span><span class="p">)</span><span class="n">src_pixels</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
  412. <span class="n">rgb16s_view_t</span> <span class="n">dst</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="p">(</span><span class="n">rgb16s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
  413. <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">dst</span><span class="p">);</span>
  414. <span class="p">}</span>
  415. <span class="c1">// Either or both the source and the destination could be planar - the gradient code does not change</span>
  416. <span class="kt">void</span> <span class="nf">XGradientPlanarRGB8_RGB32</span><span class="p">(</span>
  417. <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_r</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_g</span><span class="p">,</span> <span class="kt">unsigned</span> <span class="kt">short</span> <span class="k">const</span><span class="o">*</span> <span class="n">src_b</span><span class="p">,</span>
  418. <span class="kt">ptrdiff_t</span> <span class="n">src_row_bytes</span><span class="p">,</span> <span class="kt">int</span> <span class="n">w</span><span class="p">,</span> <span class="kt">int</span> <span class="n">h</span><span class="p">,</span>
  419. <span class="kt">signed</span> <span class="kt">int</span><span class="o">*</span> <span class="n">dst_pixels</span><span class="p">,</span> <span class="kt">ptrdiff_t</span> <span class="n">dst_row_bytes</span><span class="p">)</span>
  420. <span class="p">{</span>
  421. <span class="n">rgb16c_planar_view_t</span> <span class="n">src</span> <span class="o">=</span> <span class="n">planar_rgb_view</span> <span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="n">src_r</span><span class="p">,</span> <span class="n">src_g</span><span class="p">,</span> <span class="n">src_b</span><span class="p">,</span> <span class="n">src_row_bytes</span><span class="p">);</span>
  422. <span class="n">rgb32s_view_t</span> <span class="n">dst</span> <span class="o">=</span> <span class="n">interleaved_view</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">,(</span><span class="n">rgb32s_pixel_t</span><span class="o">*</span><span class="p">)</span><span class="n">dst_pixels</span><span class="p">,</span> <span class="n">dst_row_bytes</span><span class="p">);</span>
  423. <span class="n">x_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span><span class="n">dst</span><span class="p">);</span>
  424. <span class="p">}</span>
  425. </pre></div>
  426. </div>
  427. <p>As these examples illustrate, both the source and the destination can be
  428. interleaved or planar, of any channel depth (assuming the destination channel
  429. is assignable to the source), and of any compatible color spaces.</p>
  430. <p>GIL 2.1 can also natively represent images whose channels are not
  431. byte-aligned, such as 6-bit RGB222 image or a 1-bit Gray1 image.
  432. GIL algorithms apply to these images natively. See the design guide or sample
  433. files for more on using such images.</p>
  434. </div>
  435. <div class="section" id="image-view-transformations">
  436. <h2><a class="toc-backref" href="#id5">Image View Transformations</a></h2>
  437. <p>One way to compute the y-gradient is to rotate the image by 90 degrees,
  438. compute the x-gradient and rotate the result back.
  439. Here is how to do this in GIL:</p>
  440. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  441. <span class="kt">void</span> <span class="n">y_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  442. <span class="p">{</span>
  443. <span class="n">x_gradient</span><span class="p">(</span><span class="n">rotated90ccw_view</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">rotated90ccw_view</span><span class="p">(</span><span class="n">dst</span><span class="p">));</span>
  444. <span class="p">}</span>
  445. </pre></div>
  446. </div>
  447. <p><code class="docutils literal"><span class="pre">rotated90ccw_view</span></code> takes an image view and returns an image view
  448. representing 90-degrees counter-clockwise rotation of its input. It is
  449. an example of a GIL view transformation function. GIL provides a
  450. variety of transformation functions that can perform any axis-aligned
  451. rotation, transpose the view, flip it vertically or horizontally,
  452. extract a rectangular subimage, perform color conversion, subsample
  453. view, etc. The view transformation functions are fast and shallow -
  454. they don&#8217;t copy the pixels, they just change the &#8220;coordinate system&#8221;
  455. of accessing the pixels. <code class="docutils literal"><span class="pre">rotated90cw_view</span></code>, for example, returns a
  456. view whose horizontal iterators are the vertical iterators of the
  457. original view. The above code to compute <code class="docutils literal"><span class="pre">y_gradient</span></code> is slow
  458. because of the memory access pattern; using <code class="docutils literal"><span class="pre">rotated90cw_view</span></code> does
  459. not make it any slower.</p>
  460. <p>Another example: suppose we want to compute the gradient of the N-th
  461. channel of a color image. Here is how to do that:</p>
  462. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  463. <span class="kt">void</span> <span class="n">nth_channel_x_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="kt">int</span> <span class="n">n</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  464. <span class="p">{</span>
  465. <span class="n">x_gradient</span><span class="p">(</span><span class="n">nth_channel_view</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  466. <span class="p">}</span>
  467. </pre></div>
  468. </div>
  469. <p><code class="docutils literal"><span class="pre">nth_channel_view</span></code> is a view transformation function that takes any
  470. view and returns a single-channel (grayscale) view of its N-th
  471. channel. For interleaved RGB view, for example, the returned view is
  472. a step view - a view whose horizontal iterator skips over two channels
  473. when incremented. If applied on a planar RGB view, the returned type
  474. is a simple grayscale view whose horizontal iterator is a C pointer.
  475. Image view transformation functions can be piped together. For
  476. example, to compute the y gradient of the second channel of the even
  477. pixels in the view, use:</p>
  478. <div class="highlight-cpp"><div class="highlight"><pre><span class="n">y_gradient</span><span class="p">(</span><span class="n">subsampled_view</span><span class="p">(</span><span class="n">nth_channel_view</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  479. </pre></div>
  480. </div>
  481. <p>GIL can sometimes simplify piped views. For example, two nested
  482. subsampled views (views that skip over pixels in X and in Y) can be
  483. represented as a single subsampled view whose step is the product of
  484. the steps of the two views.</p>
  485. </div>
  486. <div class="section" id="d-pixel-iterators">
  487. <h2><a class="toc-backref" href="#id6">1D pixel iterators</a></h2>
  488. <p>Let&#8217;s go back to <code class="docutils literal"><span class="pre">x_gradient</span></code> one more time. Many image view
  489. algorithms apply the same operation for each pixel and GIL provides an
  490. abstraction to handle them. However, our algorithm has an unusual
  491. access pattern, as it skips the first and the last column. It would be
  492. nice and instructional to see how we can rewrite it in canonical
  493. form. The way to do that in GIL is to write a version that works for
  494. every pixel, but apply it only on the subimage that excludes the first
  495. and last column:</p>
  496. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient_unguarded</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  497. <span class="p">{</span>
  498. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">y</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">y</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">();</span> <span class="o">++</span><span class="n">y</span><span class="p">)</span>
  499. <span class="p">{</span>
  500. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  501. <span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">x_iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">row_begin</span><span class="p">(</span><span class="n">y</span><span class="p">);</span>
  502. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">x</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">();</span> <span class="o">++</span><span class="n">x</span><span class="p">)</span>
  503. <span class="n">dst_it</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_it</span><span class="p">[</span><span class="n">x</span><span class="o">+</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  504. <span class="p">}</span>
  505. <span class="p">}</span>
  506. <span class="kt">void</span> <span class="nf">x_gradient</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  507. <span class="p">{</span>
  508. <span class="n">assert</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span><span class="o">&gt;=</span><span class="mi">2</span><span class="p">);</span>
  509. <span class="n">x_gradient_unguarded</span><span class="p">(</span><span class="n">subimage_view</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()),</span>
  510. <span class="n">subimage_view</span><span class="p">(</span><span class="n">dst</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">width</span><span class="p">()</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="n">src</span><span class="p">.</span><span class="n">height</span><span class="p">()));</span>
  511. <span class="p">}</span>
  512. </pre></div>
  513. </div>
  514. <p><code class="docutils literal"><span class="pre">subimage_view</span></code> is another example of a GIL view transformation
  515. function. It takes a source view and a rectangular region (in this
  516. case, defined as x_min,y_min,width,height) and returns a view
  517. operating on that region of the source view. The above implementation
  518. has no measurable performance degradation from the version that
  519. operates on the original views.</p>
  520. <p>Now that <code class="docutils literal"><span class="pre">x_gradient_unguarded</span></code> operates on every pixel, we can
  521. rewrite it more compactly:</p>
  522. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient_unguarded</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  523. <span class="p">{</span>
  524. <span class="n">gray8c_view_t</span><span class="o">::</span><span class="n">iterator</span> <span class="n">src_it</span> <span class="o">=</span> <span class="n">src</span><span class="p">.</span><span class="n">begin</span><span class="p">();</span>
  525. <span class="k">for</span> <span class="p">(</span><span class="n">gray8s_view_t</span><span class="o">::</span><span class="n">iterator</span> <span class="n">dst_it</span> <span class="o">=</span> <span class="n">dst</span><span class="p">.</span><span class="n">begin</span><span class="p">();</span> <span class="n">dst_it</span><span class="o">!=</span><span class="n">dst</span><span class="p">.</span><span class="n">end</span><span class="p">();</span> <span class="o">++</span><span class="n">dst_it</span><span class="p">,</span> <span class="o">++</span><span class="n">src_it</span><span class="p">)</span>
  526. <span class="o">*</span><span class="n">dst_it</span> <span class="o">=</span> <span class="p">(</span><span class="n">src_it</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_it</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  527. <span class="p">}</span>
  528. </pre></div>
  529. </div>
  530. <p>GIL image views provide <code class="docutils literal"><span class="pre">begin()</span></code> and <code class="docutils literal"><span class="pre">end()</span></code> methods that return
  531. one dimensional pixel iterators which iterate over each pixel in the
  532. view, left to right and top to bottom. They do a proper &#8220;carriage
  533. return&#8221; - they skip any unused bytes at the end of a row. As such,
  534. they are slightly suboptimal, because they need to keep track of their
  535. current position with respect to the end of the row. Their increment
  536. operator performs one extra check (are we at the end of the row?), a
  537. check that is avoided if two nested loops are used instead. These
  538. iterators have a method <code class="docutils literal"><span class="pre">x()</span></code> which returns the more lightweight
  539. horizontal iterator that we used previously. Horizontal iterators have
  540. no notion of the end of rows. In this case, the horizontal iterators
  541. are raw C pointers. In our example, we must use the horizontal
  542. iterators to access the two neighbors properly, since they could
  543. reside outside the image view.</p>
  544. </div>
  545. <div class="section" id="stl-equivalent-algorithms">
  546. <h2><a class="toc-backref" href="#id7">STL Equivalent Algorithms</a></h2>
  547. <p>GIL provides STL equivalents of many algorithms. For example,
  548. <code class="docutils literal"><span class="pre">std::transform</span></code> is an STL algorithm that sets each element in a
  549. destination range the result of a generic function taking the
  550. corresponding element of the source range. In our example, we want to
  551. assign to each destination pixel the value of the half-difference of
  552. the horizontal neighbors of the corresponding source pixel. If we
  553. abstract that operation in a function object, we can use GIL&#8217;s
  554. <code class="docutils literal"><span class="pre">transform_pixel_positions</span></code> to do that:</p>
  555. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">struct</span> <span class="n">half_x_difference</span>
  556. <span class="p">{</span>
  557. <span class="kt">int</span> <span class="k">operator</span><span class="p">()(</span><span class="k">const</span> <span class="n">gray8c_loc_t</span><span class="o">&amp;</span> <span class="n">src_loc</span><span class="p">)</span> <span class="k">const</span>
  558. <span class="p">{</span>
  559. <span class="k">return</span> <span class="p">(</span><span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">src_loc</span><span class="p">.</span><span class="n">x</span><span class="p">()[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mi">2</span><span class="p">;</span>
  560. <span class="p">}</span>
  561. <span class="p">};</span>
  562. <span class="kt">void</span> <span class="nf">x_gradient_unguarded</span><span class="p">(</span><span class="n">gray8c_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  563. <span class="p">{</span>
  564. <span class="n">transform_pixel_positions</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">dst</span><span class="p">,</span> <span class="n">half_x_difference</span><span class="p">());</span>
  565. <span class="p">}</span>
  566. </pre></div>
  567. </div>
  568. <p>GIL provides the algorithms <code class="docutils literal"><span class="pre">for_each_pixel</span></code> and
  569. <code class="docutils literal"><span class="pre">transform_pixels</span></code> which are image view equivalents of STL
  570. <code class="docutils literal"><span class="pre">std::for_each</span></code> and <code class="docutils literal"><span class="pre">std::transform</span></code>. It also provides
  571. <code class="docutils literal"><span class="pre">for_each_pixel_position</span></code> and <code class="docutils literal"><span class="pre">transform_pixel_positions</span></code>, which
  572. instead of references to pixels, pass to the generic function pixel
  573. locators. This allows for more powerful functions that can use the
  574. pixel neighbors through the passed locators. GIL algorithms iterate
  575. through the pixels using the more efficient two nested loops (as
  576. opposed to the single loop using 1-D iterators)</p>
  577. </div>
  578. <div class="section" id="color-conversion">
  579. <h2><a class="toc-backref" href="#id8">Color Conversion</a></h2>
  580. <p>Instead of computing the gradient of each color plane of an image, we
  581. often want to compute the gradient of the luminosity. In other words,
  582. we want to convert the color image to grayscale and compute the
  583. gradient of the result. Here how to compute the luminosity gradient of
  584. a 32-bit float RGB image:</p>
  585. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_gradient_rgb_luminosity</span><span class="p">(</span><span class="n">rgb32fc_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  586. <span class="p">{</span>
  587. <span class="n">x_gradient</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  588. <span class="p">}</span>
  589. </pre></div>
  590. </div>
  591. <p><code class="docutils literal"><span class="pre">color_converted_view</span></code> is a GIL view transformation function that
  592. takes any image view and returns a view in a target color space and
  593. channel depth (specified as template parameters). In our example, it
  594. constructs an 8-bit integer grayscale view over 32-bit float RGB
  595. pixels. Like all other view transformation functions,
  596. <code class="docutils literal"><span class="pre">color_converted_view</span></code> is very fast and shallow. It doesn&#8217;t copy the
  597. data or perform any color conversion. Instead it returns a view that
  598. performs color conversion every time its pixels are accessed.</p>
  599. <p>In the generic version of this algorithm we might like to convert the
  600. color space to grayscale, but keep the channel depth the same. We do
  601. that by constructing the type of a GIL grayscale pixel with the same
  602. channel as the source, and color convert to that pixel type:</p>
  603. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  604. <span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">SrcView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">DstView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  605. <span class="p">{</span>
  606. <span class="k">using</span> <span class="n">gray_pixel_t</span> <span class="o">=</span> <span class="n">pixel</span><span class="o">&lt;</span><span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">SrcView</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">,</span> <span class="n">gray_layout_t</span><span class="o">&gt;</span><span class="p">;</span>
  607. <span class="n">x_gradient</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  608. <span class="p">}</span>
  609. </pre></div>
  610. </div>
  611. <p>When the destination color space and channel type happens to be the
  612. same as the source one, color conversion is unnecessary. GIL detects
  613. this case and avoids calling the color conversion code at all -
  614. i.e. <code class="docutils literal"><span class="pre">color_converted_view</span></code> returns back the source view unchanged.</p>
  615. </div>
  616. <div class="section" id="image">
  617. <h2><a class="toc-backref" href="#id9">Image</a></h2>
  618. <p>The above example has a performance problem - <code class="docutils literal"><span class="pre">x_gradient</span></code>
  619. dereferences most source pixels twice, which will cause the above code
  620. to perform color conversion twice. Sometimes it may be more efficient
  621. to copy the color converted image into a temporary buffer and use it
  622. to compute the gradient - that way color conversion is invoked once
  623. per pixel. Using our non-generic version we can do it like this:</p>
  624. <div class="highlight-cpp"><div class="highlight"><pre><span class="kt">void</span> <span class="nf">x_luminosity_gradient</span><span class="p">(</span><span class="n">rgb32fc_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">gray8s_view_t</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  625. <span class="p">{</span>
  626. <span class="n">gray8_image_t</span> <span class="n">ccv_image</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
  627. <span class="n">copy_pixels</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">));</span>
  628. <span class="n">x_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  629. <span class="p">}</span>
  630. </pre></div>
  631. </div>
  632. <p>First we construct an 8-bit grayscale image with the same dimensions
  633. as our source. Then we copy a color-converted view of the source into
  634. the temporary image. Finally we use a read-only view of the temporary
  635. image in our <code class="docutils literal"><span class="pre">x_gradient</span> <span class="pre">algorithm</span></code>. As the example shows, GIL
  636. provides global functions <code class="docutils literal"><span class="pre">view</span></code> and <code class="docutils literal"><span class="pre">const_view</span></code> that take an
  637. image and return a mutable or an immutable view of its pixels.</p>
  638. <p>Creating a generic version of the above is a bit trickier:</p>
  639. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  640. <span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  641. <span class="p">{</span>
  642. <span class="k">using</span> <span class="n">d_channel_t</span> <span class="o">=</span> <span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">;</span>
  643. <span class="k">using</span> <span class="n">channel_t</span> <span class="o">=</span> <span class="k">typename</span> <span class="n">channel_convert_to_unsigned</span><span class="o">&lt;</span><span class="n">d_channel_t</span><span class="o">&gt;::</span><span class="n">type</span><span class="p">;</span>
  644. <span class="k">using</span> <span class="n">gray_pixel_t</span> <span class="o">=</span> <span class="n">pixel</span><span class="o">&lt;</span><span class="n">channel_t</span><span class="p">,</span> <span class="n">gray_layout_t</span><span class="o">&gt;</span><span class="p">;</span>
  645. <span class="k">using</span> <span class="n">gray_image_t</span> <span class="o">=</span> <span class="n">image</span><span class="o">&lt;</span><span class="n">gray_pixel_t</span><span class="p">,</span> <span class="nb">false</span><span class="o">&gt;</span><span class="p">;</span>
  646. <span class="n">gray_image_t</span> <span class="nf">ccv_image</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
  647. <span class="n">copy_pixels</span><span class="p">(</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">));</span>
  648. <span class="n">x_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  649. <span class="p">}</span>
  650. </pre></div>
  651. </div>
  652. <p>First we use the <code class="docutils literal"><span class="pre">channel_type</span></code> metafunction to get the channel type
  653. of the destination view. A metafunction is a function operating on
  654. types. In GIL metafunctions are class templates (declared with
  655. <code class="docutils literal"><span class="pre">struct</span></code> type specifier) which take their parameters as template
  656. parameters and return their result in a nested typedef called
  657. <code class="docutils literal"><span class="pre">type</span></code>. In this case, <code class="docutils literal"><span class="pre">channel_type</span></code> is a unary metafunction which
  658. in this example is called with the type of an image view and returns
  659. the type of the channel associated with that image view.</p>
  660. <p>GIL constructs that have an associated pixel type, such as pixels,
  661. pixel iterators, locators, views and images, all model
  662. <code class="docutils literal"><span class="pre">PixelBasedConcept</span></code>, which means that they provide a set of
  663. metafunctions to query the pixel properties, such as <code class="docutils literal"><span class="pre">channel_type</span></code>,
  664. <code class="docutils literal"><span class="pre">color_space_type</span></code>, <code class="docutils literal"><span class="pre">channel_mapping_type</span></code>, and <code class="docutils literal"><span class="pre">num_channels</span></code>.</p>
  665. <p>After we get the channel type of the destination view, we use another
  666. metafunction to remove its sign (if it is a signed integral type) and
  667. then use it to generate the type of a grayscale pixel. From the pixel
  668. type we create the image type. GIL&#8217;s image class is specialized over
  669. the pixel type and a boolean indicating whether the image should be
  670. planar or interleaved. Single-channel (grayscale) images in GIL must
  671. always be interleaved. There are multiple ways of constructing types
  672. in GIL. Instead of instantiating the classes directly we could have
  673. used type factory metafunctions. The following code is equivalent:</p>
  674. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  675. <span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">SrcView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="n">DstView</span> <span class="k">const</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  676. <span class="p">{</span>
  677. <span class="k">typedef</span> <span class="k">typename</span> <span class="n">channel_type</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">d_channel_t</span><span class="p">;</span>
  678. <span class="k">typedef</span> <span class="k">typename</span> <span class="n">channel_convert_to_unsigned</span><span class="o">&lt;</span><span class="n">d_channel_t</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">channel_t</span><span class="p">;</span>
  679. <span class="k">typedef</span> <span class="k">typename</span> <span class="n">image_type</span><span class="o">&lt;</span><span class="n">channel_t</span><span class="p">,</span> <span class="n">gray_layout_t</span><span class="o">&gt;::</span><span class="n">type</span> <span class="n">gray_image_t</span><span class="p">;</span>
  680. <span class="k">typedef</span> <span class="k">typename</span> <span class="n">gray_image_t</span><span class="o">::</span><span class="n">value_type</span> <span class="n">gray_pixel_t</span><span class="p">;</span>
  681. <span class="n">gray_image_t</span> <span class="nf">ccv_image</span><span class="p">(</span><span class="n">src</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
  682. <span class="n">copy_and_convert_pixels</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">));</span>
  683. <span class="n">x_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">ccv_image</span><span class="p">),</span> <span class="n">dst</span><span class="p">);</span>
  684. <span class="p">}</span>
  685. </pre></div>
  686. </div>
  687. <p>GIL provides a set of metafunctions that generate GIL types -
  688. <code class="docutils literal"><span class="pre">image_type</span></code> is one such meta-function that constructs the type of
  689. an image from a given channel type, color layout, and
  690. planar/interleaved option (the default is interleaved). There are also
  691. similar meta-functions to construct the types of pixel references,
  692. iterators, locators and image views. GIL also has metafunctions
  693. <code class="docutils literal"><span class="pre">derived_pixel_reference_type</span></code>, <code class="docutils literal"><span class="pre">derived_iterator_type</span></code>,
  694. <code class="docutils literal"><span class="pre">derived_view_type</span></code> and <code class="docutils literal"><span class="pre">derived_image_type</span></code> that construct the
  695. type of a GIL construct from a given source one by changing one or
  696. more properties of the type and keeping the rest.</p>
  697. <p>From the image type we can use the nested typedef <code class="docutils literal"><span class="pre">value_type</span></code> to
  698. obtain the type of a pixel. GIL images, image views and locators have
  699. nested typedefs <code class="docutils literal"><span class="pre">value_type</span></code> and <code class="docutils literal"><span class="pre">reference</span></code> to obtain the type of
  700. the pixel and a reference to the pixel. If you have a pixel iterator,
  701. you can get these types from its <code class="docutils literal"><span class="pre">iterator_traits</span></code>. Note also the
  702. algorithm <code class="docutils literal"><span class="pre">copy_and_convert_pixels</span></code>, which is an abbreviated version
  703. of <code class="docutils literal"><span class="pre">copy_pixels</span></code> with a color converted source view.</p>
  704. </div>
  705. <div class="section" id="virtual-image-views">
  706. <h2><a class="toc-backref" href="#id10">Virtual Image Views</a></h2>
  707. <p>So far we have been dealing with images that have pixels stored in
  708. memory. GIL allows you to create an image view of an arbitrary image,
  709. including a synthetic function. To demonstrate this, let us create a
  710. view of the Mandelbrot set. First, we need to create a function
  711. object that computes the value of the Mandelbrot set at a given
  712. location (x,y) in the image:</p>
  713. <div class="highlight-cpp"><div class="highlight"><pre><span class="c1">// models PixelDereferenceAdaptorConcept</span>
  714. <span class="k">struct</span> <span class="n">mandelbrot_fn</span>
  715. <span class="p">{</span>
  716. <span class="k">typedef</span> <span class="n">point</span><span class="o">&lt;</span><span class="kt">ptrdiff_t</span><span class="o">&gt;</span> <span class="n">point_t</span><span class="p">;</span>
  717. <span class="k">typedef</span> <span class="n">mandelbrot_fn</span> <span class="n">const_t</span><span class="p">;</span>
  718. <span class="k">typedef</span> <span class="n">gray8_pixel_t</span> <span class="n">value_type</span><span class="p">;</span>
  719. <span class="k">typedef</span> <span class="n">value_type</span> <span class="n">reference</span><span class="p">;</span>
  720. <span class="k">typedef</span> <span class="n">value_type</span> <span class="n">const_reference</span><span class="p">;</span>
  721. <span class="k">typedef</span> <span class="n">point_t</span> <span class="n">argument_type</span><span class="p">;</span>
  722. <span class="k">typedef</span> <span class="n">reference</span> <span class="n">result_type</span><span class="p">;</span>
  723. <span class="k">static</span> <span class="kt">bool</span> <span class="k">constexpr</span> <span class="n">is_mutable</span> <span class="o">=</span> <span class="nb">false</span><span class="p">;</span>
  724. <span class="n">mandelbrot_fn</span><span class="p">()</span> <span class="p">{}</span>
  725. <span class="n">mandelbrot_fn</span><span class="p">(</span><span class="k">const</span> <span class="n">point_t</span><span class="o">&amp;</span> <span class="n">sz</span><span class="p">)</span> <span class="o">:</span> <span class="n">_img_size</span><span class="p">(</span><span class="n">sz</span><span class="p">)</span> <span class="p">{}</span>
  726. <span class="n">result_type</span> <span class="k">operator</span><span class="p">()(</span><span class="k">const</span> <span class="n">point_t</span><span class="o">&amp;</span> <span class="n">p</span><span class="p">)</span> <span class="k">const</span>
  727. <span class="p">{</span>
  728. <span class="c1">// normalize the coords to (-2..1, -1.5..1.5)</span>
  729. <span class="kt">double</span> <span class="n">t</span><span class="o">=</span><span class="n">get_num_iter</span><span class="p">(</span><span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;</span><span class="p">(</span><span class="n">p</span><span class="p">.</span><span class="n">x</span><span class="o">/</span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">_img_size</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="mi">3</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="n">p</span><span class="p">.</span><span class="n">y</span><span class="o">/</span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">_img_size</span><span class="p">.</span><span class="n">y</span><span class="o">*</span><span class="mi">3</span><span class="o">-</span><span class="mf">1.5f</span><span class="p">));</span>
  730. <span class="k">return</span> <span class="nf">value_type</span><span class="p">((</span><span class="n">bits8</span><span class="p">)(</span><span class="n">pow</span><span class="p">(</span><span class="n">t</span><span class="p">,</span><span class="mf">0.2</span><span class="p">)</span><span class="o">*</span><span class="mi">255</span><span class="p">));</span> <span class="c1">// raise to power suitable for viewing</span>
  731. <span class="p">}</span>
  732. <span class="k">private</span><span class="o">:</span>
  733. <span class="n">point_t</span> <span class="n">_img_size</span><span class="p">;</span>
  734. <span class="kt">double</span> <span class="nf">get_num_iter</span><span class="p">(</span><span class="k">const</span> <span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;&amp;</span> <span class="n">p</span><span class="p">)</span> <span class="k">const</span>
  735. <span class="p">{</span>
  736. <span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;</span> <span class="n">Z</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">);</span>
  737. <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">i</span><span class="o">&lt;</span><span class="mi">100</span><span class="p">;</span> <span class="o">++</span><span class="n">i</span><span class="p">)</span> <span class="c1">// 100 iterations</span>
  738. <span class="p">{</span>
  739. <span class="n">Z</span> <span class="o">=</span> <span class="n">point</span><span class="o">&lt;</span><span class="kt">double</span><span class="o">&gt;</span><span class="p">(</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span> <span class="o">-</span> <span class="n">Z</span><span class="p">.</span><span class="n">y</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">y</span> <span class="o">+</span> <span class="n">p</span><span class="p">.</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">y</span> <span class="o">+</span> <span class="n">p</span><span class="p">.</span><span class="n">y</span><span class="p">);</span>
  740. <span class="k">if</span> <span class="p">(</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">x</span> <span class="o">+</span> <span class="n">Z</span><span class="p">.</span><span class="n">y</span><span class="o">*</span><span class="n">Z</span><span class="p">.</span><span class="n">y</span> <span class="o">&gt;</span> <span class="mi">4</span><span class="p">)</span>
  741. <span class="k">return</span> <span class="n">i</span><span class="o">/</span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="mi">100</span><span class="p">;</span>
  742. <span class="p">}</span>
  743. <span class="k">return</span> <span class="mi">0</span><span class="p">;</span>
  744. <span class="p">}</span>
  745. <span class="p">};</span>
  746. </pre></div>
  747. </div>
  748. <p>We can now use GIL&#8217;s <code class="docutils literal"><span class="pre">virtual_2d_locator</span></code> with this function object
  749. to construct a Mandelbrot view of size 200x200 pixels:</p>
  750. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">typedef</span> <span class="n">mandelbrot_fn</span><span class="o">::</span><span class="n">point_t</span> <span class="n">point_t</span><span class="p">;</span>
  751. <span class="k">typedef</span> <span class="n">virtual_2d_locator</span><span class="o">&lt;</span><span class="n">mandelbrot_fn</span><span class="p">,</span><span class="nb">false</span><span class="o">&gt;</span> <span class="n">locator_t</span><span class="p">;</span>
  752. <span class="k">typedef</span> <span class="n">image_view</span><span class="o">&lt;</span><span class="n">locator_t</span><span class="o">&gt;</span> <span class="n">my_virt_view_t</span><span class="p">;</span>
  753. <span class="n">point_t</span> <span class="nf">dims</span><span class="p">(</span><span class="mi">200</span><span class="p">,</span><span class="mi">200</span><span class="p">);</span>
  754. <span class="c1">// Construct a Mandelbrot view with a locator, taking top-left corner (0,0) and step (1,1)</span>
  755. <span class="n">my_virt_view_t</span> <span class="nf">mandel</span><span class="p">(</span><span class="n">dims</span><span class="p">,</span> <span class="n">locator_t</span><span class="p">(</span><span class="n">point_t</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span> <span class="n">point_t</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="n">mandelbrot_fn</span><span class="p">(</span><span class="n">dims</span><span class="p">)));</span>
  756. </pre></div>
  757. </div>
  758. <p>We can treat the synthetic view just like a real one. For example,
  759. let&#8217;s invoke our <code class="docutils literal"><span class="pre">x_gradient</span></code> algorithm to compute the gradient of
  760. the 90-degree rotated view of the Mandelbrot set and save the original
  761. and the result:</p>
  762. <div class="highlight-cpp"><div class="highlight"><pre><span class="n">gray8s_image_t</span> <span class="nf">img</span><span class="p">(</span><span class="n">dims</span><span class="p">);</span>
  763. <span class="n">x_gradient</span><span class="p">(</span><span class="n">rotated90cw_view</span><span class="p">(</span><span class="n">mandel</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">img</span><span class="p">));</span>
  764. <span class="c1">// Save the Mandelbrot set and its 90-degree rotated gradient (jpeg cannot save signed char; must convert to unsigned char)</span>
  765. <span class="n">jpeg_write_view</span><span class="p">(</span><span class="s">&quot;mandel.jpg&quot;</span><span class="p">,</span><span class="n">mandel</span><span class="p">);</span>
  766. <span class="n">jpeg_write_view</span><span class="p">(</span><span class="s">&quot;mandel_grad.jpg&quot;</span><span class="p">,</span><span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">img</span><span class="p">)));</span>
  767. </pre></div>
  768. </div>
  769. <p>Here is what the two files look like:</p>
  770. <img alt="../_images/mandel.jpg" src="../_images/mandel.jpg" />
  771. </div>
  772. <div class="section" id="run-time-specified-images-and-image-views">
  773. <h2><a class="toc-backref" href="#id11">Run-Time Specified Images and Image Views</a></h2>
  774. <p>So far we have created a generic function that computes the image
  775. gradient of an image view template specialization. Sometimes,
  776. however, the properties of an image view, such as its color space and
  777. channel depth, may not be available at compile time. GIL&#8217;s
  778. <code class="docutils literal"><span class="pre">dynamic_image</span></code> extension allows for working with GIL constructs
  779. that are specified at run time, also called _variants_. GIL provides
  780. models of a run-time instantiated image, <code class="docutils literal"><span class="pre">any_image</span></code>, and a run-time
  781. instantiated image view, <code class="docutils literal"><span class="pre">any_image_view</span></code>. The mechanisms are in
  782. place to create other variants, such as <code class="docutils literal"><span class="pre">any_pixel</span></code>,
  783. <code class="docutils literal"><span class="pre">any_pixel_iterator</span></code>, etc. Most of GIL&#8217;s algorithms and all of the
  784. view transformation functions also work with run-time instantiated
  785. image views and binary algorithms, such as <code class="docutils literal"><span class="pre">copy_pixels</span></code> can have
  786. either or both arguments be variants.</p>
  787. <p>Lets make our <code class="docutils literal"><span class="pre">x_luminosity_gradient</span></code> algorithm take a variant image
  788. view. For simplicity, let&#8217;s assume that only the source view can be a
  789. variant. (As an example of using multiple variants, see GIL&#8217;s image
  790. view algorithm overloads taking multiple variants.)</p>
  791. <p>First, we need to make a function object that contains the templated
  792. destination view and has an application operator taking a templated
  793. source view:</p>
  794. <div class="highlight-cpp"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/gil/extension/dynamic_image/dynamic_image_all.hpp&gt;</span><span class="cp"></span>
  795. <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  796. <span class="k">struct</span> <span class="n">x_gradient_obj</span>
  797. <span class="p">{</span>
  798. <span class="k">typedef</span> <span class="kt">void</span> <span class="n">result_type</span><span class="p">;</span> <span class="c1">// required typedef</span>
  799. <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">_dst</span><span class="p">;</span>
  800. <span class="n">x_gradient_obj</span><span class="p">(</span><span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span> <span class="o">:</span> <span class="n">_dst</span><span class="p">(</span><span class="n">dst</span><span class="p">)</span> <span class="p">{}</span>
  801. <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcView</span><span class="o">&gt;</span>
  802. <span class="kt">void</span> <span class="k">operator</span><span class="p">()(</span><span class="k">const</span> <span class="n">SrcView</span><span class="o">&amp;</span> <span class="n">src</span><span class="p">)</span> <span class="k">const</span> <span class="p">{</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">_dst</span><span class="p">);</span> <span class="p">}</span>
  803. <span class="p">};</span>
  804. </pre></div>
  805. </div>
  806. <p>The second step is to provide an overload of <code class="docutils literal"><span class="pre">x_luminosity_gradient</span></code> that
  807. takes image view variant and calls GIL&#8217;s <code class="docutils literal"><span class="pre">apply_operation</span></code> passing it the
  808. function object:</p>
  809. <div class="highlight-cpp"><div class="highlight"><pre><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">SrcViews</span><span class="p">,</span> <span class="k">typename</span> <span class="n">DstView</span><span class="o">&gt;</span>
  810. <span class="kt">void</span> <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="k">const</span> <span class="n">any_image_view</span><span class="o">&lt;</span><span class="n">SrcViews</span><span class="o">&gt;&amp;</span> <span class="n">src</span><span class="p">,</span> <span class="k">const</span> <span class="n">DstView</span><span class="o">&amp;</span> <span class="n">dst</span><span class="p">)</span>
  811. <span class="p">{</span>
  812. <span class="n">apply_operation</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">x_gradient_obj</span><span class="o">&lt;</span><span class="n">DstView</span><span class="o">&gt;</span><span class="p">(</span><span class="n">dst</span><span class="p">));</span>
  813. <span class="p">}</span>
  814. </pre></div>
  815. </div>
  816. <p><code class="docutils literal"><span class="pre">any_image_view&lt;SrcViews&gt;</span></code> is the image view variant. It is
  817. templated over <code class="docutils literal"><span class="pre">SrcViews</span></code>, an enumeration of all possible view types
  818. the variant can take. <code class="docutils literal"><span class="pre">src</span></code> contains inside an index of the
  819. currently instantiated type, as well as a block of memory containing
  820. the instance. <code class="docutils literal"><span class="pre">apply_operation</span></code> goes through a switch statement
  821. over the index, each case of which casts the memory to the correct
  822. view type and invokes the function object with it. Invoking an
  823. algorithm on a variant has the overhead of one switch
  824. statement. Algorithms that perform an operation for each pixel in an
  825. image view have practically no performance degradation when used with
  826. a variant.</p>
  827. <p>Here is how we can construct a variant and invoke the algorithm:</p>
  828. <div class="highlight-cpp"><div class="highlight"><pre><span class="cp">#include</span> <span class="cpf">&lt;boost/mpl/vector.hpp&gt;</span><span class="cp"></span>
  829. <span class="cp">#include</span> <span class="cpf">&lt;boost/gil/extension/io/jpeg_dynamic_io.hpp&gt;</span><span class="cp"></span>
  830. <span class="k">typedef</span> <span class="n">mpl</span><span class="o">::</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">gray8_image_t</span><span class="p">,</span> <span class="n">gray16_image_t</span><span class="p">,</span> <span class="n">rgb8_image_t</span><span class="p">,</span> <span class="n">rgb16_image_t</span><span class="o">&gt;</span> <span class="n">my_img_types</span><span class="p">;</span>
  831. <span class="n">any_image</span><span class="o">&lt;</span><span class="n">my_img_types</span><span class="o">&gt;</span> <span class="n">runtime_image</span><span class="p">;</span>
  832. <span class="n">jpeg_read_image</span><span class="p">(</span><span class="s">&quot;input.jpg&quot;</span><span class="p">,</span> <span class="n">runtime_image</span><span class="p">);</span>
  833. <span class="n">gray8s_image_t</span> <span class="nf">gradient</span><span class="p">(</span><span class="n">runtime_image</span><span class="p">.</span><span class="n">dimensions</span><span class="p">());</span>
  834. <span class="n">x_luminosity_gradient</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">runtime_image</span><span class="p">),</span> <span class="n">view</span><span class="p">(</span><span class="n">gradient</span><span class="p">));</span>
  835. <span class="n">jpeg_write_view</span><span class="p">(</span><span class="s">&quot;x_gradient.jpg&quot;</span><span class="p">,</span> <span class="n">color_converted_view</span><span class="o">&lt;</span><span class="n">gray8_pixel_t</span><span class="o">&gt;</span><span class="p">(</span><span class="n">const_view</span><span class="p">(</span><span class="n">gradient</span><span class="p">)));</span>
  836. </pre></div>
  837. </div>
  838. <p>In this example, we create an image variant that could be 8-bit or
  839. 16-bit RGB or grayscale image. We then use GIL&#8217;s I/O extension to load
  840. the image from file in its native color space and channel depth. If
  841. none of the allowed image types matches the image on disk, an
  842. exception will be thrown. We then construct a 8 bit signed
  843. (i.e. <code class="docutils literal"><span class="pre">char</span></code>) image to store the gradient and invoke <code class="docutils literal"><span class="pre">x_gradient</span></code>
  844. on it. Finally we save the result into another file. We save the view
  845. converted to 8-bit unsigned, because JPEG I/O does not support signed
  846. char.</p>
  847. <p>Note how free functions and methods such as <code class="docutils literal"><span class="pre">jpeg_read_image</span></code>,
  848. <code class="docutils literal"><span class="pre">dimensions</span></code>, <code class="docutils literal"><span class="pre">view</span></code> and <code class="docutils literal"><span class="pre">const_view</span></code> work on both templated and
  849. variant types. For templated images <code class="docutils literal"><span class="pre">view(img)</span></code> returns a templated
  850. view, whereas for image variants it returns a view variant. For
  851. example, the return type of <code class="docutils literal"><span class="pre">view(runtime_image)</span></code> is
  852. <code class="docutils literal"><span class="pre">any_image_view&lt;Views&gt;</span></code> where <code class="docutils literal"><span class="pre">Views</span></code> enumerates four views
  853. corresponding to the four image types. <code class="docutils literal"><span class="pre">const_view(runtime_image)</span></code>
  854. returns a <code class="docutils literal"><span class="pre">any_image_view</span></code> of the four read-only view types, etc.</p>
  855. <p>A warning about using variants: instantiating an algorithm with a
  856. variant effectively instantiates it with every possible type the
  857. variant can take. For binary algorithms, the algorithm is
  858. instantiated with every possible combination of the two input types!
  859. This can take a toll on both the compile time and the executable size.</p>
  860. </div>
  861. <div class="section" id="conclusion">
  862. <h2><a class="toc-backref" href="#id12">Conclusion</a></h2>
  863. <p>This tutorial provides a glimpse at the challenges associated with
  864. writing generic and efficient image processing algorithms in GIL. We
  865. have taken a simple algorithm and shown how to make it work with image
  866. representations that vary in bit depth, color space, ordering of the
  867. channels, and planar/interleaved structure. We have demonstrated that
  868. the algorithm can work with fully abstracted virtual images, and even
  869. images whose type is specified at run time. The associated video
  870. presentation also demonstrates that even for complex scenarios the
  871. generated assembly is comparable to that of a C version of the
  872. algorithm, hand-written for the specific image types.</p>
  873. <p>Yet, even for such a simple algorithm, we are far from making a fully
  874. generic and optimized code. In particular, the presented algorithms
  875. work on homogeneous images, i.e. images whose pixels have channels
  876. that are all of the same type. There are examples of images, such as a
  877. packed 565 RGB format, which contain channels of different
  878. types. While GIL provides concepts and algorithms operating on
  879. heterogeneous pixels, we leave the task of extending x_gradient as an
  880. exercise for the reader. Second, after computing the value of the
  881. gradient we are simply casting it to the destination channel
  882. type. This may not always be the desired operation. For example, if
  883. the source channel is a float with range [0..1] and the destination is
  884. unsigned char, casting the half-difference to unsigned char will
  885. result in either 0 or 1. Instead, what we might want to do is scale
  886. the result into the range of the destination channel. GIL&#8217;s
  887. channel-level algorithms might be useful in such cases. For example,
  888. p channel_convert converts between channels by linearly scaling the
  889. source channel value into the range of the destination channel.</p>
  890. <p>There is a lot to be done in improving the performance as
  891. well. Channel-level operations, such as the half-difference, could be
  892. abstracted out into atomic channel-level algorithms and performance
  893. overloads could be provided for concrete channel
  894. types. Processor-specific operations could be used, for example, to
  895. perform the operation over an entire row of pixels simultaneously, or
  896. the data could be pre-fetched. All of these optimizations can be
  897. realized as performance specializations of the generic
  898. algorithm. Finally, compilers, while getting better over time, are
  899. still failing to fully optimize generic code in some cases, such as
  900. failing to inline some functions or put some variables into
  901. registers. If performance is an issue, it might be worth trying your
  902. code with different compilers.</p>
  903. </div>
  904. </div>
  905. <div class="navbar" style="text-align:right;">
  906. <a class="prev" title="Tutorial: Histogram" href="histogram.html"><img src="../_static/prev.png" alt="prev"/></a>
  907. <a class="next" title="Naming Conventions" href="../naming.html"><img src="../_static/next.png" alt="next"/></a>
  908. </div>
  909. </div>
  910. <div class="footer" role="contentinfo">
  911. Last updated on 2019-12-10 00:12:10.
  912. Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.5.6.
  913. </div>
  914. </body>
  915. </html>