diff0.html 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. <html>
  2. <head>
  3. <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
  4. <title>Lanczos Smoothing Derivatives</title>
  5. <link rel="stylesheet" href="../math.css" type="text/css">
  6. <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
  7. <link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
  8. <link rel="up" href="../quadrature.html" title="Chapter&#160;13.&#160;Quadrature and Differentiation">
  9. <link rel="prev" href="autodiff.html" title="Automatic Differentiation">
  10. <link rel="next" href="../inverse_complex.html" title="Chapter&#160;14.&#160;Complex Number Functions">
  11. </head>
  12. <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
  13. <table cellpadding="2" width="100%"><tr>
  14. <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
  15. <td align="center"><a href="../../../../../index.html">Home</a></td>
  16. <td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
  17. <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
  18. <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
  19. <td align="center"><a href="../../../../../more/index.htm">More</a></td>
  20. </tr></table>
  21. <hr>
  22. <div class="spirit-nav">
  23. <a accesskey="p" href="autodiff.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../inverse_complex.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
  24. </div>
  25. <div class="section">
  26. <div class="titlepage"><div><div><h2 class="title" style="clear: both">
  27. <a name="math_toolkit.diff0"></a><a class="link" href="diff0.html" title="Lanczos Smoothing Derivatives">Lanczos Smoothing Derivatives</a>
  28. </h2></div></div></div>
  29. <h4>
  30. <a name="math_toolkit.diff0.h0"></a>
  31. <span class="phrase"><a name="math_toolkit.diff0.synopsis"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.synopsis">Synopsis</a>
  32. </h4>
  33. <pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">differentiation</span><span class="special">/</span><span class="identifier">lanczos_smoothing</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
  34. <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">differentiation</span> <span class="special">{</span>
  35. <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">order</span><span class="special">=</span><span class="number">1</span><span class="special">&gt;</span>
  36. <span class="keyword">class</span> <span class="identifier">discrete_lanczos_derivative</span> <span class="special">{</span>
  37. <span class="keyword">public</span><span class="special">:</span>
  38. <span class="identifier">discrete_lanczos_derivative</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">spacing</span><span class="special">,</span>
  39. <span class="identifier">size_t</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">18</span><span class="special">,</span>
  40. <span class="identifier">size_t</span> <span class="identifier">approximation_order</span> <span class="special">=</span> <span class="number">3</span><span class="special">);</span>
  41. <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span><span class="special">&gt;</span>
  42. <span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
  43. <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span><span class="special">&gt;</span>
  44. <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">RandomAccessContainer</span> <span class="special">&amp;</span> <span class="identifier">dvdt</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
  45. <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span><span class="special">&gt;</span>
  46. <span class="identifier">RandomAccessContainer</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
  47. <span class="identifier">Real</span> <span class="identifier">get_spacing</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
  48. <span class="special">};</span>
  49. <span class="special">}</span> <span class="comment">// namespaces</span>
  50. </pre>
  51. <h4>
  52. <a name="math_toolkit.diff0.h1"></a>
  53. <span class="phrase"><a name="math_toolkit.diff0.description"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.description">Description</a>
  54. </h4>
  55. <p>
  56. The <code class="computeroutput"><span class="identifier">discrete_lanczos_derivative</span></code>
  57. class calculates a finite-difference approximation to the derivative of a noisy
  58. sequence of equally-spaced values <span class="emphasis"><em>v</em></span>. A basic usage is
  59. </p>
  60. <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
  61. <span class="comment">// fill v with noisy data.</span>
  62. <span class="keyword">double</span> <span class="identifier">spacing</span> <span class="special">=</span> <span class="number">0.001</span><span class="special">;</span>
  63. <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">differentiation</span><span class="special">::</span><span class="identifier">discrete_lanczos_derivative</span><span class="special">;</span>
  64. <span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">discrete_lanczos_derivative</span><span class="special">(</span><span class="identifier">spacing</span><span class="special">);</span>
  65. <span class="comment">// Compute dvdt at index 30:</span>
  66. <span class="keyword">double</span> <span class="identifier">dvdt30</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="number">30</span><span class="special">);</span>
  67. <span class="comment">// Compute derivative of entire vector:</span>
  68. <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">dvdt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
  69. </pre>
  70. <p>
  71. Noise-suppressing second derivatives can also be computed. The syntax is as
  72. follows:
  73. </p>
  74. <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
  75. <span class="comment">// fill v with noisy data.</span>
  76. <span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">lanczos_derivative</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;(</span><span class="identifier">spacing</span><span class="special">);</span>
  77. <span class="comment">// evaluate second derivative at a point:</span>
  78. <span class="keyword">double</span> <span class="identifier">d2vdt2</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="number">18</span><span class="special">);</span>
  79. <span class="comment">// evaluate second derivative of entire vector:</span>
  80. <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">d2vdt2</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
  81. </pre>
  82. <p>
  83. For memory conscious programmers, you can reuse the memory space for the derivative
  84. as follows:
  85. </p>
  86. <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
  87. <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">dvdt</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
  88. <span class="comment">// . . . define spacing, create and instance of discrete_lanczos_derivative</span>
  89. <span class="comment">// populate dvdt, perhaps in a loop:</span>
  90. <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">dvdt</span><span class="special">);</span>
  91. </pre>
  92. <p>
  93. If the data has variance &#963;<sup>2</sup>, then the variance of the computed derivative
  94. is roughly &#963;<sup>2</sup><span class="emphasis"><em>p</em></span><sup>3</sup> <span class="emphasis"><em>n</em></span><sup>-3</sup> &#916;
  95. <span class="emphasis"><em>t</em></span><sup>-2</sup>, i.e., it increases cubically with the approximation
  96. order <span class="emphasis"><em>p</em></span>, linearly with the data variance, and decreases
  97. at the cube of the filter length <span class="emphasis"><em>n</em></span>. In addition, we must
  98. not forget the discretization error which is <span class="emphasis"><em>O</em></span>(&#916;
  99. <span class="emphasis"><em>t</em></span><sup><span class="emphasis"><em>p</em></span></sup>). You can play around with the
  100. approximation order <span class="emphasis"><em>p</em></span> and the filter length <span class="emphasis"><em>n</em></span>:
  101. </p>
  102. <pre class="programlisting"><span class="identifier">size_t</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">12</span><span class="special">;</span>
  103. <span class="identifier">size_t</span> <span class="identifier">p</span> <span class="special">=</span> <span class="number">2</span><span class="special">;</span>
  104. <span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">lanczos_derivative</span><span class="special">(</span><span class="identifier">spacing</span><span class="special">,</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">p</span><span class="special">);</span>
  105. <span class="keyword">double</span> <span class="identifier">dvdt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">i</span><span class="special">);</span>
  106. </pre>
  107. <p>
  108. If <span class="emphasis"><em>p=2n</em></span>, then the discrete Lanczos derivative is not smoothing:
  109. It reduces to the standard <span class="emphasis"><em>2n+1</em></span>-point finite-difference
  110. formula. For <span class="emphasis"><em>p&gt;2n</em></span>, an assertion is hit as the filter
  111. is undefined.
  112. </p>
  113. <p>
  114. In our tests with AWGN, we have found the error decreases monotonically with
  115. <span class="emphasis"><em>n</em></span>, as is expected from the theory discussed above. So
  116. the choice of <span class="emphasis"><em>n</em></span> is simple: As high as possible given your
  117. speed requirements (larger <span class="emphasis"><em>n</em></span> implies a longer filter and
  118. hence more compute), balanced against the danger of overfitting and averaging
  119. over non-stationarity.
  120. </p>
  121. <p>
  122. The choice of approximation order <span class="emphasis"><em>p</em></span> for a given <span class="emphasis"><em>n</em></span>
  123. is more difficult. If your signal is believed to be a polynomial, it does not
  124. make sense to set <span class="emphasis"><em>p</em></span> to larger than the polynomial degree-
  125. though it may be sensible to take <span class="emphasis"><em>p</em></span> less than this.
  126. </p>
  127. <p>
  128. For a sinusoidal signal contaminated with AWGN, we ran a few tests showing
  129. that for SNR = 1, p = n/8 gave the best results, for SNR = 10, p = n/7 was
  130. the best, and for SNR = 100, p = n/6 was the most reasonable choice. For SNR
  131. = 0.1, the method appears to be useless. The user is urged to use these results
  132. with caution: they have no theoretical backing and are extrapolated from a
  133. single case.
  134. </p>
  135. <p>
  136. The filters are (regrettably) computed at runtime-the vast number of combinations
  137. of approximation order and filter length makes the number of filters that must
  138. be stored excessive for compile-time data. The constructor call computes the
  139. filters. Since each filter has length <span class="emphasis"><em>2n+1</em></span> and there are
  140. <span class="emphasis"><em>n</em></span> filters, whose element each consist of <span class="emphasis"><em>p</em></span>
  141. summands, the complexity of the constructor call is O(<span class="emphasis"><em>n</em></span><sup>2</sup><span class="emphasis"><em>p</em></span>).
  142. This is not cheap-though for most cases small <span class="emphasis"><em>p</em></span> and <span class="emphasis"><em>n</em></span>
  143. not too large (&lt; 20) is desired. However, for concreteness, on the author's
  144. 2.7GHz Intel laptop CPU, the <span class="emphasis"><em>n=16</em></span>, <span class="emphasis"><em>p=3</em></span>
  145. filter takes 9 microseconds to compute. This is far from negligible, and as
  146. such the filters may be used with multiple data, and even shared between threads:
  147. </p>
  148. <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v1</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
  149. <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v2</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
  150. <span class="comment">// fill v1, v2 with noisy data.</span>
  151. <span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">lanczos_derivative</span><span class="special">(</span><span class="identifier">spacing</span><span class="special">);</span>
  152. <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">dv1dt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v1</span><span class="special">);</span> <span class="comment">// threadsafe</span>
  153. <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">dv2dt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v2</span><span class="special">);</span> <span class="comment">// threadsafe</span>
  154. <span class="comment">// need to use a different spacing?</span>
  155. <span class="identifier">lanczos</span><span class="special">.</span><span class="identifier">reset_spacing</span><span class="special">(</span><span class="number">0.02</span><span class="special">);</span> <span class="comment">// not threadsafe</span>
  156. </pre>
  157. <p>
  158. The implementation follows <a href="https://doi.org/10.1080/00207160.2012.666348" target="_top">McDevitt,
  159. 2012</a>, who vastly expanded the ideas of Lanczos to create a very general
  160. framework for numerically differentiating noisy equispaced data.
  161. </p>
  162. <h4>
  163. <a name="math_toolkit.diff0.h2"></a>
  164. <span class="phrase"><a name="math_toolkit.diff0.example"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.example">Example</a>
  165. </h4>
  166. <p>
  167. We have extracted some data from the <a href="https://www.gw-openscience.org/data/" target="_top">LIGO
  168. signal</a> and differentiated it using the (<span class="emphasis"><em>n</em></span>, <span class="emphasis"><em>p</em></span>)
  169. = (60, 4) Lanczos smoothing derivative, as well as using the (<span class="emphasis"><em>n</em></span>,
  170. <span class="emphasis"><em>p</em></span>) = (4, 8) (nonsmoothing) derivative.
  171. </p>
  172. <div class="blockquote"><blockquote class="blockquote"><p>
  173. <span class="inlinemediaobject"><img src="../../graphs/ligo_derivative.svg" align="middle"></span>
  174. </p></blockquote></div>
  175. <p>
  176. The original data is in orange, the smoothing derivative in blue, and the non-smoothing
  177. standard finite difference formula is in gray. (Each time series has been rescaled
  178. to fit in the same graph.) We can see that the smoothing derivative tracks
  179. the increase and decrease in the trend well, whereas the standard finite difference
  180. formula produces nonsense and amplifies noise.
  181. </p>
  182. <h4>
  183. <a name="math_toolkit.diff0.h3"></a>
  184. <span class="phrase"><a name="math_toolkit.diff0.caveats"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.caveats">Caveats</a>
  185. </h4>
  186. <p>
  187. The computation of the filters is ill-conditioned for large <span class="emphasis"><em>p</em></span>.
  188. In order to mitigate this problem, we have computed the filters in higher precision
  189. and cast the results to the desired type. However, this simply pushes the problem
  190. to larger <span class="emphasis"><em>p</em></span>. In practice, this is not a problem, as large
  191. <span class="emphasis"><em>p</em></span> corresponds to less powerful denoising, but keep it
  192. in mind.
  193. </p>
  194. <p>
  195. In addition, the <code class="computeroutput"><span class="special">-</span><span class="identifier">ffast</span><span class="special">-</span><span class="identifier">math</span></code> flag
  196. has a very large effect on the speed of these functions. In our benchmarks,
  197. they were 50% faster with the flag enabled, which is much larger than the usual
  198. performance increases we see by turning on this flag. Hence, if the default
  199. performance is not sufficient, this flag is available, though it comes with
  200. its own problems.
  201. </p>
  202. <p>
  203. This requires C++17 <code class="computeroutput"><span class="keyword">if</span> <span class="keyword">constexpr</span></code>.
  204. </p>
  205. <h4>
  206. <a name="math_toolkit.diff0.h4"></a>
  207. <span class="phrase"><a name="math_toolkit.diff0.references"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.references">References</a>
  208. </h4>
  209. <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
  210. <li class="listitem">
  211. Corless, Robert M., and Nicolas Fillion. <span class="emphasis"><em>A graduate introduction
  212. to numerical methods.</em></span> AMC 10 (2013): 12.
  213. </li>
  214. <li class="listitem">
  215. Lanczos, Cornelius. <span class="emphasis"><em>Applied analysis.</em></span> Courier Corporation,
  216. 1988.
  217. </li>
  218. <li class="listitem">
  219. Timothy J. McDevitt (2012): <span class="emphasis"><em>Discrete Lanczos derivatives of noisy
  220. data</em></span>, International Journal of Computer Mathematics, 89:7, 916-931
  221. </li>
  222. </ul></div>
  223. </div>
  224. <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
  225. <td align="left"></td>
  226. <td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
  227. Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
  228. Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
  229. R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
  230. Daryle Walker and Xiaogang Zhang<p>
  231. Distributed under the Boost Software License, Version 1.0. (See accompanying
  232. file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
  233. </p>
  234. </div></td>
  235. </tr></table>
  236. <hr>
  237. <div class="spirit-nav">
  238. <a accesskey="p" href="autodiff.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../inverse_complex.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
  239. </div>
  240. </body>
  241. </html>