123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- /*=============================================================================
- Adaptable closures
- Phoenix V0.9
- Copyright (c) 2001-2002 Joel de Guzman
- Distributed under the Boost Software License, Version 1.0. (See
- accompanying file LICENSE_1_0.txt or copy at
- http://www.boost.org/LICENSE_1_0.txt)
- URL: http://spirit.sourceforge.net/
- ==============================================================================*/
- #ifndef PHOENIX_CLOSURES_HPP
- #define PHOENIX_CLOSURES_HPP
- ///////////////////////////////////////////////////////////////////////////////
- #include "boost/lambda/core.hpp"
- ///////////////////////////////////////////////////////////////////////////////
- namespace boost {
- namespace lambda {
- ///////////////////////////////////////////////////////////////////////////////
- //
- // Adaptable closures
- //
- // The framework will not be complete without some form of closures
- // support. Closures encapsulate a stack frame where local
- // variables are created upon entering a function and destructed
- // upon exiting. Closures provide an environment for local
- // variables to reside. Closures can hold heterogeneous types.
- //
- // Phoenix closures are true hardware stack based closures. At the
- // very least, closures enable true reentrancy in lambda functions.
- // A closure provides access to a function stack frame where local
- // variables reside. Modeled after Pascal nested stack frames,
- // closures can be nested just like nested functions where code in
- // inner closures may access local variables from in-scope outer
- // closures (accessing inner scopes from outer scopes is an error
- // and will cause a run-time assertion failure).
- //
- // There are three (3) interacting classes:
- //
- // 1) closure:
- //
- // At the point of declaration, a closure does not yet create a
- // stack frame nor instantiate any variables. A closure declaration
- // declares the types and names[note] of the local variables. The
- // closure class is meant to be subclassed. It is the
- // responsibility of a closure subclass to supply the names for
- // each of the local variable in the closure. Example:
- //
- // struct my_closure : closure<int, string, double> {
- //
- // member1 num; // names the 1st (int) local variable
- // member2 message; // names the 2nd (string) local variable
- // member3 real; // names the 3rd (double) local variable
- // };
- //
- // my_closure clos;
- //
- // Now that we have a closure 'clos', its local variables can be
- // accessed lazily using the dot notation. Each qualified local
- // variable can be used just like any primitive actor (see
- // primitives.hpp). Examples:
- //
- // clos.num = 30
- // clos.message = arg1
- // clos.real = clos.num * 1e6
- //
- // The examples above are lazily evaluated. As usual, these
- // expressions return composite actors that will be evaluated
- // through a second function call invocation (see operators.hpp).
- // Each of the members (clos.xxx) is an actor. As such, applying
- // the operator() will reveal its identity:
- //
- // clos.num() // will return the current value of clos.num
- //
- // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
- // introduced and initilally implemented the closure member names
- // that uses the dot notation.
- //
- // 2) closure_member
- //
- // The named local variables of closure 'clos' above are actually
- // closure members. The closure_member class is an actor and
- // conforms to its conceptual interface. member1..memberN are
- // predefined typedefs that correspond to each of the listed types
- // in the closure template parameters.
- //
- // 3) closure_frame
- //
- // When a closure member is finally evaluated, it should refer to
- // an actual instance of the variable in the hardware stack.
- // Without doing so, the process is not complete and the evaluated
- // member will result to an assertion failure. Remember that the
- // closure is just a declaration. The local variables that a
- // closure refers to must still be instantiated.
- //
- // The closure_frame class does the actual instantiation of the
- // local variables and links these variables with the closure and
- // all its members. There can be multiple instances of
- // closure_frames typically situated in the stack inside a
- // function. Each closure_frame instance initiates a stack frame
- // with a new set of closure local variables. Example:
- //
- // void foo()
- // {
- // closure_frame<my_closure> frame(clos);
- // /* do something */
- // }
- //
- // where 'clos' is an instance of our closure 'my_closure' above.
- // Take note that the usage above precludes locally declared
- // classes. If my_closure is a locally declared type, we can still
- // use its self_type as a paramater to closure_frame:
- //
- // closure_frame<my_closure::self_type> frame(clos);
- //
- // Upon instantiation, the closure_frame links the local variables
- // to the closure. The previous link to another closure_frame
- // instance created before is saved. Upon destruction, the
- // closure_frame unlinks itself from the closure and relinks the
- // preceding closure_frame prior to this instance.
- //
- // The local variables in the closure 'clos' above is default
- // constructed in the stack inside function 'foo'. Once 'foo' is
- // exited, all of these local variables are destructed. In some
- // cases, default construction is not desirable and we need to
- // initialize the local closure variables with some values. This
- // can be done by passing in the initializers in a compatible
- // tuple. A compatible tuple is one with the same number of
- // elements as the destination and where each element from the
- // destination can be constructed from each corresponding element
- // in the source. Example:
- //
- // tuple<int, char const*, int> init(123, "Hello", 1000);
- // closure_frame<my_closure> frame(clos, init);
- //
- // Here now, our closure_frame's variables are initialized with
- // int: 123, char const*: "Hello" and int: 1000.
- //
- ///////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////
- //
- // closure_frame class
- //
- ///////////////////////////////////////////////////////////////////////////////
- template <typename ClosureT>
- class closure_frame : public ClosureT::tuple_t {
- public:
- closure_frame(ClosureT& clos)
- : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
- { clos.frame = this; }
- template <typename TupleT>
- closure_frame(ClosureT& clos, TupleT const& init)
- : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
- { clos.frame = this; }
- ~closure_frame()
- { frame = save; }
- private:
- closure_frame(closure_frame const&); // no copy
- closure_frame& operator=(closure_frame const&); // no assign
- closure_frame* save;
- closure_frame*& frame;
- };
- ///////////////////////////////////////////////////////////////////////////////
- //
- // closure_member class
- //
- ///////////////////////////////////////////////////////////////////////////////
- template <int N, typename ClosureT>
- class closure_member {
- public:
- typedef typename ClosureT::tuple_t tuple_t;
- closure_member()
- : frame(ClosureT::closure_frame_ref()) {}
- template <typename TupleT>
- struct sig {
- typedef typename detail::tuple_element_as_reference<
- N, typename ClosureT::tuple_t
- >::type type;
- };
- template <class Ret, class A, class B, class C>
- // typename detail::tuple_element_as_reference
- // <N, typename ClosureT::tuple_t>::type
- Ret
- call(A&, B&, C&) const
- {
- assert(frame);
- return boost::tuples::get<N>(*frame);
- }
- private:
- typename ClosureT::closure_frame_t*& frame;
- };
- ///////////////////////////////////////////////////////////////////////////////
- //
- // closure class
- //
- ///////////////////////////////////////////////////////////////////////////////
- template <
- typename T0 = null_type,
- typename T1 = null_type,
- typename T2 = null_type,
- typename T3 = null_type,
- typename T4 = null_type
- >
- class closure {
- public:
- typedef tuple<T0, T1, T2, T3, T4> tuple_t;
- typedef closure<T0, T1, T2, T3, T4> self_t;
- typedef closure_frame<self_t> closure_frame_t;
- closure()
- : frame(0) { closure_frame_ref(&frame); }
- closure_frame_t& context() { assert(frame); return frame; }
- closure_frame_t const& context() const { assert(frame); return frame; }
- typedef lambda_functor<closure_member<0, self_t> > member1;
- typedef lambda_functor<closure_member<1, self_t> > member2;
- typedef lambda_functor<closure_member<2, self_t> > member3;
- typedef lambda_functor<closure_member<3, self_t> > member4;
- typedef lambda_functor<closure_member<4, self_t> > member5;
- private:
- closure(closure const&); // no copy
- closure& operator=(closure const&); // no assign
- template <int N, typename ClosureT>
- friend class closure_member;
- template <typename ClosureT>
- friend class closure_frame;
- static closure_frame_t*&
- closure_frame_ref(closure_frame_t** frame_ = 0)
- {
- static closure_frame_t** frame = 0;
- if (frame_ != 0)
- frame = frame_;
- return *frame;
- }
- closure_frame_t* frame;
- };
- }}
- // namespace
- #endif
|