123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 |
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
- <html>
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Boost CRC Library Documentation</title>
- </head>
- <body text="black" bgcolor="white" link="blue" vlink="purple" alink="red">
- <h1><img src="../../boost.png" alt="boost.png (6897 bytes)"
- align="middle" width="277" height="86">Header <cite><<a
- href="../../boost/crc.hpp">boost/crc.hpp</a>></cite></h1>
- <p>The header <cite><<a
- href="../../boost/crc.hpp">boost/crc.hpp</a>></cite> supplies two
- class templates in namespace <code>boost</code>. These templates define
- objects that can compute the <dfn>CRC</dfn>, or cyclic redundancy code
- (or check), of a given stream of data. The header also supplies
- function templates to compute a CRC in one step.</p>
- <h2><a name="contents">Contents</a></h2>
- <ol>
- <li><a href="#contents">Contents</a></li>
- <li><a href="#header">Header Synopsis</a></li>
- <li><a href="#rationale">Rationale</a></li>
- <li><a href="#background">Background</a>
- <ul>
- <li><a href="#parameters">CRC Parameters</a></li>
- </ul></li>
- <li><a href="#crc_basic">Theoretical CRC Computer</a></li>
- <li><a href="#crc_optimal">Optimized CRC Computer</a></li>
- <li><a href="#usage">Computer Usage</a></li>
- <li><a href="#crc_func">CRC Function</a></li>
- <li><a href="#a_crc_func">Augmented-CRC Function</a></li>
- <li><a href="#crc_ex">Pre-Defined CRC Samples</a></li>
- <li><a href="#references">References</a></li>
- <li><a href="#credits">Credits</a>
- <ul>
- <li><a href="#contributors">Contributors</a></li>
- <li><a href="#acknowledgements">Acknowledgements</a></li>
- <li><a href="#history">History</a></li>
- </ul></li>
- </ol>
- <h2><a name="header">Header Synopsis</a></h2>
- <blockquote><pre>#include <boost/integer.hpp> <i>// for boost::uint_t</i>
- #include <cstddef> <i>// for std::size_t</i>
- namespace boost
- {
- template < std::size_t Bits >
- class crc_basic;
- template < std::size_t Bits, <em>impl_def</em> TruncPoly = 0u,
- <em>impl_def</em> InitRem = 0u,
- <em>impl_def</em> FinalXor = 0u, bool ReflectIn = false,
- bool ReflectRem = false >
- class crc_optimal;
- template < std::size_t Bits, <em>impl_def</em> TruncPoly,
- <em>impl_def</em> InitRem, <em>impl_def</em> FinalXor,
- bool ReflectIn, bool ReflectRem >
- typename uint_t<Bits>::fast crc( void const *buffer,
- std::size_t byte_count );
- template < std::size_t Bits, <em>impl_def</em> TruncPoly >
- typename uint_t<Bits>::fast augmented_crc( void const *buffer,
- std::size_t byte_count,
- typename uint_t<Bits>::fast initial_remainder = 0u );
- typedef crc_optimal<16, 0x8005, 0, 0, true, true> crc_16_type;
- typedef crc_optimal<16, 0x1021, 0xFFFF, 0, false, false> crc_ccitt_type;
- typedef crc_optimal<16, 0x8408, 0, 0, true, true> crc_xmodem_type;
- typedef crc_optimal<32, 0x04C11DB7, 0xFFFFFFFF, 0xFFFFFFFF, true, true>
- crc_32_type;
- }
- </pre></blockquote>
- <p>The implementation-defined type <var>impl_def</var> stands for the
- quickest-to-manipulate built-in unsigned integral type that can
- represent at least <var>Bits</var> bits.</p>
- <h2><a name="rationale">Rationale</a></h2>
- <p>A common error detection technique, especially with electronic
- communications, is an appended checksum. The transmitter sends its data
- bits, followed by the bits of the checksum. The checksum is based on
- operations done on the data bit stream. The receiver applies the same
- operations on the bits it gets, and then gets the checksum. If the
- computed checksum doesn't match the received checksum, then an error
- ocurred in the transmission. There is the slight chance that the error
- is only in the checksum, and an actually-correct data stream is
- rejected. There is also the chance of an error occurring that does not
- change the checksum, making that error invisible. CRC is a common
- checksum type, used for error detection for hardware interfaces and
- encoding formats.</p>
- <h2><a name="background">Background</a></h2>
- <p>CRCs work by computing the remainder of a modulo-2 polynominal
- division. The message is treated as the (binary) coefficents of a long
- polynominal for the dividend, with the earlier bits of the message fed
- first as the polynominal's highest coefficents. A particular CRC
- algorithm has another polynominal associated with it to be used as the
- divisor. The quotient is ignored. The remainder of the division
- considered the checksum. However, the division uses modulo-2 rules (no
- carries) for the coefficents.</p>
- <p>See <cite><a href="http://www.ross.net/crc/crcpaper.html">A
- Painless Guide to CRC Error Detection Algorithms</a></cite> for complete
- information. A clearer guide is at the <a
- href="http://www.netrino.com/Embedded-Systems/How-To/CRC-Calculation-C-Code">CRC
- Implementation Code in C</a> web page.</p>
- <h3><a name="parameters">CRC Parameters</a></h3>
- <dl>
- <dt>Truncated polynominal
- <dd>The divisor polynominal has a degree one bit larger than the
- checksum (remainder) size. That highest bit is always one, so
- it is ignored when describing a particular CRC type. Excluding
- this bit makes the divisor fit in the same data type as the
- checksum.
- <dt>Initial remainder
- <dd>The interim CRC remainder changes as each bit is processed.
- Usually, the interim remainder starts at zero, but some CRCs use
- a different initial value to avoid "blind spots." A
- blind spot is when a common sequence of message bits does not
- change certain interim remainder values.
- <dt>Final XOR value
- <dd>A CRC remainder can be combined with a defined value, <i>via</i>
- a bitwise exclusive-or operation, before being returned to the
- user. The value is usually zero, meaning the interim remainder
- is returned unchanged. The other common value is an all-ones
- value, meaning that the bitwise complement of the interim
- remainder is returned.
- <dt>Reflected input
- <dd>A message's bits are usually fed a byte at a time, with the
- highest bits of the byte treated as the higher bits of the
- dividend polynominal. Some CRCs reflect the bits (about the
- byte's center, so the first and last bits are switched,
- <i>etc.</i>) before feeding.
- <dt>Reflected (remainder) output
- <dd>Some CRCs return the reflection of the interim remainder (taking
- place <em>before</em> the final XOR value stage).
- </dl>
- <h2><a name="crc_basic">Theoretical CRC Computer</a></h2>
- <blockquote><pre>template < std::size_t Bits >
- class boost::crc_basic
- {
- public:
- // Type
- typedef <em>implementation_defined</em> value_type;
- // Constant reflecting template parameter
- static std::size_t const bit_count = Bits;
- // Constructor
- explicit crc_basic( value_type truncated_polynominal,
- value_type initial_remainder = 0, value_type final_xor_value = 0,
- bool reflect_input = false, bool reflect_remainder = false );
- // Internal Operations
- value_type get_truncated_polynominal() const;
- value_type get_initial_remainder() const;
- value_type get_final_xor_value() const;
- bool get_reflect_input() const;
- bool get_reflect_remainder() const;
- value_type get_interim_remainder() const;
- void reset( value_type new_rem );
- void reset();
- // External Operations
- void process_bit( bool bit );
- void process_bits( unsigned char bits, std::size_t bit_count );
- void process_byte( unsigned char byte );
- void process_block( void const *bytes_begin, void const *bytes_end );
- void process_bytes( void const *buffer, std::size_t byte_count );
- value_type checksum() const;
- };
- </pre></blockquote>
- <p>The <code>value_type</code> is the smallest built-in type that can
- hold the specified (by <code>Bits</code>) number of bits. This should
- be <code>boost::uint_t<Bits>::least</code>, see the <a
- href="../integer/doc/html/boost_integer/integer.html">documentation for integer type
- selection</a> for details.</p>
- <p>This implementation is slow since it computes its CRC the same way as
- in theory, bit by bit. No optimizations are performed. It wastes space
- since most of the CRC parameters are specified at run-time as
- constructor parameters.</p>
- <h2><a name="crc_optimal">Optimized CRC Computer</a></h2>
- <blockquote><pre>template < std::size_t Bits, <em>impl_def</em> TruncPoly,
- <em>impl_def</em> InitRem, <em>impl_def</em> FinalXor,
- bool ReflectIn, bool ReflectRem >
- class boost::crc_optimal
- {
- public:
- // Type
- typedef <em>implementation_defined</em> value_type;
- // Constants reflecting template parameters
- static std::size_t const bit_count = Bits;
- static value_type const truncated_polynominal = TruncPoly;
- static value_type const initial_remainder = InitRem;
- static value_type const final_xor_value = FinalXor;
- static bool const reflect_input = ReflectIn;
- static bool const reflect_remainder = ReflectRem;
- // Constructor
- explicit crc_optimal( value_type init_rem = InitRem );
- // Internal Operations
- value_type get_truncated_polynominal() const;
- value_type get_initial_remainder() const;
- value_type get_final_xor_value() const;
- bool get_reflect_input() const;
- bool get_reflect_remainder() const;
- value_type get_interim_remainder() const;
- void reset( value_type new_rem = InitRem );
- // External Operations
- void process_byte( unsigned char byte );
- void process_block( void const *bytes_begin, void const *bytes_end );
- void process_bytes( void const *buffer, std::size_t byte_count );
- value_type checksum() const;
- // Operators
- void operator ()( unsigned char byte );
- value_type operator ()() const;
- };
- </pre></blockquote>
- <p>The <code>value_type</code> is the quickest-to-manipulate built-in
- type that can hold at least the specified (by <code>Bits</code>) number
- of bits. This should be <code>boost::uint_t<Bits>::fast</code>.
- See the <a href="../integer/doc/html/boost_integer/integer.html">integer type selection
- documentation</a> for details. The <code>TruncPoly</code>,
- <code>InitRem</code>, and <code>FinalXor</code> template parameters also
- are of this type.</p>
- <p>This implementation is fast since it uses as many optimizations as
- practical. All of the CRC parameters are specified at compile-time as
- template parameters. No individual bits are considered; only whole
- bytes are passed. A table of interim CRC values versus byte values is
- pre-computed when the first object using a particular bit size,
- truncated polynominal, and input reflection state is processed.</p>
- <h2><a name="usage">Computer Usage</a></h2>
- <p>The two class templates have different policies on where the CRC's
- parameters go. Both class templates use the number of bits in the CRC
- as the first template parameter. The theoretical computer class
- template has the bit count as its only template parameter, all the other
- CRC parameters are entered through the constructor. The optimized
- computer class template obtains all its CRC parameters as template
- parameters, and instantiated objects are usually
- default-constructed.</p>
- <p>The CRC parameters can be inspected at run-time with the following
- member functions: <code>get_truncated_polynominal</code>,
- <code>get_initial_remainder</code>, <code>get_final_xor_value</code>,
- <code>get_reflect_input</code>, and <code>get_reflect_remainder</code>.
- The fast computer also provides compile-time constants for its CRC
- parameters.</p>
- <p>The <code>get_interim_remainder</code> member function returns the
- internal state of the CRC remainder. It represents the unreflected
- remainder of the last division. Saving an interim remainder allows the
- freezing of CRC processing, as long as the other CRC parameters and the
- current position of the bit stream are saved. Restarting a frozen
- stream involves constructing a new computer with the most of the old
- computer's parameters. The only change is to use the frozen remainder
- as the new computer's initial remainder. Then the interrupted bit
- stream can be fed as if nothing happened. The fast CRC computer has a
- special constructor that takes one argument, an interim remainder, for
- this purpose (overriding the initial remainder CRC parameter).</p>
- <p>The <code>reset</code> member functions reset the internal state of
- the CRC remainder to the given value. If no value is given, then the
- internal remainder is set to the initial remainder value when the object
- was created. The remainder must be unreflected. When a CRC calculation
- is finished, calling <code>reset</code> lets the object be reused for a
- new session.</p>
- <p>After any construction, both CRC computers work the same way.
- Feeding new data to a computer is in a seperate operation(s) from
- extracting the current CRC value from the computer. The following table
- lists the feeding and extracting operations.</p>
- <table cellpadding="5" border="1">
- <caption>Regular CRC Operations</caption>
- <tr>
- <th>Operation</th>
- <th>Description</th>
- </tr>
- <tr>
- <td><code>void process_bit( bool bit );</code></td>
- <td>Feeds the single <var>bit</var> to the computer, updating
- the interim CRC. It is only defined for the slow CRC
- computer.</td>
- </tr>
- <tr>
- <td><code>void process_bits( unsigned char bits, std::size_t
- bit_count );</code></td>
- <td>Acts as applying <code>process_bit</code> to the lowest
- <var>bit_count</var> bits given in <var>bits</var>, most
- significant relevant bit first. The results are undefined
- if <var>bit_count</var> exceeds the number of bits per byte.
- It is only defined for the slow CRC computer.</td>
- </tr>
- <tr>
- <td><code>void process_byte( unsigned char byte );</code></td>
- <td>Acts as applying <code>process_bit</code> to the all the
- bits in <var>byte</var>. If reflection is not desired, the
- bits are fed from the most to least significant. The bits
- are fed in the opposite order if reflection is desired.</td>
- </tr>
- <tr>
- <td><code>void process_block( void const *bytes_begin, void
- const *bytes_end );</code></td>
- <td>Acts as applying <code>process_byte</code> to each byte in
- the given memory block. This memory block starts at
- <var>bytes_begin</var> and finishes before
- <var>bytes_end</var>. The bytes are processed in that
- order.</td>
- </tr>
- <tr>
- <td><code>void process_bytes( void const *buffer, std::size_t
- byte_count );</code></td>
- <td>Acts as applying <code>process_byte</code> to each byte in
- the given memory block. This memory block starts at
- <var>buffer</var> and lasts for <var>byte_count</var> bytes.
- The bytes are processed in ascending order.</td>
- </tr>
- <tr>
- <td><code>value_type checksum() const;</code></td>
- <td>Returns the CRC checksum of the data passed in so far,
- possibly after applying the remainder-reflection and
- exclusive-or operations.</td>
- </tr>
- <tr>
- <td><code>void operator ()( unsigned char byte );</code></td>
- <td>Calls <code>process_byte</code>. This member function lets
- its object act as a (stateful) function object. It is only
- defined for the fast CRC computer.</td>
- </tr>
- <tr>
- <td><code>value_type operator ()() const;</code></td>
- <td>Calls <code>checksum</code>. This member function lets
- its object act as a generator function object. It is only
- defined for the fast CRC computer.</td>
- </tr>
- </table>
- <p>You can use them like this:</p>
- <blockquote><pre>#include <boost/crc.hpp> <i>// for boost::crc_basic, boost::crc_optimal</i>
- #include <boost/cstdint.hpp> <i>// for boost::uint16_t</i>
- #include <algorithm> <i>// for std::for_each</i>
- #include <cassert> <i>// for assert</i>
- #include <cstddef> <i>// for std::size_t</i>
- #include <iostream> <i>// for std::cout</i>
- #include <ostream> <i>// for std::endl</i>
- // Main function
- int
- main ()
- {
- // This is "123456789" in ASCII
- unsigned char const data[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
- 0x38, 0x39 };
- std::size_t const data_len = sizeof( data ) / sizeof( data[0] );
- // The expected CRC for the given data
- boost::uint16_t const expected = 0x29B1;
- // Simulate CRC-CCITT
- boost::crc_basic<16> crc_ccitt1( 0x1021, 0xFFFF, 0, false, false );
- crc_ccitt1.process_bytes( data, data_len );
- assert( crc_ccitt1.checksum() == expected );
- // Repeat with the optimal version (assuming a 16-bit type exists)
- boost::crc_optimal<16, 0x1021, 0xFFFF, 0, false, false> crc_ccitt2;
- crc_ccitt2 = std::for_each( data, data + data_len, crc_ccitt2 );
- assert( crc_ccitt2() == expected );
- std::cout << "All tests passed." << std::endl;
- return 0;
- }
- </pre></blockquote>
- <h2><a name="crc_func">CRC Function</a></h2>
- <blockquote><pre>template < std::size_t Bits, <em>impl_def</em> TruncPoly,
- <em>impl_def</em> InitRem, <em>impl_def</em> FinalXor,
- bool ReflectIn, bool ReflectRem >
- typename boost::uint_t<Bits>::fast
- boost::crc( void const *buffer, std::size_t byte_count );
- </pre></blockquote>
- <p>The <code>boost::crc</code> function template computes the CRC of a
- given data block. The data block starts at the address given by
- <var>buffer</var> and lasts for <var>byte_count</var> bytes. The CRC
- parameters are passed through template arguments, identical to the
- optimized CRC computer (<a href="#crc_optimal">see above</a>). In fact,
- such a computer is used to implement this function.</p>
- <h2><a name="a_crc_func">Augmented-CRC Function</a></h2>
- <blockquote><pre>template < std::size_t Bits, <em>impl_def</em> TruncPoly >
- typename boost::uint_t<Bits>::fast
- boost::augmented_crc( void const *buffer, std::size_t byte_count,
- typename boost::uint_t<Bits>::fast initial_remainder = 0u );
- </pre></blockquote>
- <p>All the other CRC-computing function or class templates work assuming
- that the division steps start immediately on the first message bits.
- The <code>boost::augmented_crc</code> function template has a
- different division order. Instead of combining (<i>via</i> bitwise
- exclusive-or) the current message bit with the highest bit of a separate
- remainder, these templates shift a new message bit into the low bit of a
- remainder register as the highest bit is shifted out. The new method
- means that the bits in the inital remainder value are processed before
- any of the actual message bits are processed. To compensate, the real
- CRC can only be extracted after feeding enough zero bits (the same count
- as the register size) after the message bits.</p>
- <p>The template parameters of the function template are
- the CRC's bit size (<code>Bits</code>) and the truncated polynominal
- (<code>TruncPoly</code>). The function parameters are the starting address of
- the data block to be worked on (<var>buffer</var>), the number of bytes in that
- data block (<var>byte_count</var>), and the incoming value of the remainder
- (<var>initial_remainder</var>). That last parameter defaults to zero if it is
- ommitted.</p>
- <p>This function template is useful if the bytes of the CRC directly
- follow the message's bytes. First, set the bytes of where the CRC will
- go to zero. Then use <code>augmented_crc</code> over the augmented
- message, <i>i.e.</i> the message bytes and the appended CRC bytes. Then
- assign the result to the CRC. To later check a received message, either
- use <code>augmented_crc</code> (with the same parameters as
- transmission, of course) on the received <em>unaugmented</em> message
- and check if the result equals the CRC, or use
- <code>augmented_crc</code> on the received <em>augmented</em> message
- and check if the result equals zero. Note that the CRC has to be stored
- with the more-significant bytes first (big-endian).</p>
- <p>Interruptions in the CRC data can be handled by feeding the result of
- <code>augmented_crc</code> of the previous data block as the
- <var>initial_remainder</var> when calling <code>augmented_crc</code> on
- the next data block. Remember that the actual CRC can only be
- determined after feeding the augmented bytes. Since this method uses
- modulo-2 polynominal division at its most raw, neither final XOR values
- nor reflection can be used.</p>
- <p>Note that for the same CRC system, the initial remainder for
- augmented message method will be different than for the unaugmented
- message method. The main exception is zero; if the augmented-CRC
- algorithm uses a zero initial remainder, the equivalent unaugmented-CRC
- algorithm will also use a zero initial remainder. Given an initial
- remainder for a augmented-CRC algorithm, the result from processing just
- zero-valued CRC bytes without any message bytes is the equivalent inital
- remainder for the unaugmented-CRC algorithm. An example follows:</p>
- <blockquote><pre>#include <boost/crc.hpp> <i>// for boost::crc_basic, boost::augmented_crc</i>
- #include <boost/cstdint.hpp> <i>// for boost::uint16_t</i>
- #include <cassert> <i>// for assert</i>
- #include <iostream> <i>// for std::cout</i>
- #include <ostream> <i>// for std::endl</i>
- // Main function
- int
- main ()
- {
- using boost::uint16_t;
- using boost::augmented_crc;
- uint16_t data[6] = { 2, 4, 31, 67, 98, 0 };
- uint16_t const init_rem = 0x123;
- uint16_t crc1 = augmented_crc<16, 0x8005>( data, sizeof(data), init_rem );
- uint16_t const zero = 0;
- uint16_t const new_init_rem = augmented_crc<16, 0x8005>( &zero, sizeof(zero) );
- boost::crc_basic<16> crc2( 0x8005, new_init_rem );
- crc2.process_block( data, &data[5] ); // don't include CRC
- assert( crc2.checksum() == crc1 );
- std::cout << "All tests passed." << std::endl;
- return 0;
- }
- </pre></blockquote>
- <h2><a name="crc_ex">Pre-Defined CRC Samples</a></h2>
- <p>Four sample CRC types are given, representing several common CRC
- algorithms. For example, computations from <code>boost::crc_32_type</code>
- can be used for implementing the PKZip standard. Note that, in general, this
- library is concerned with CRC implementation, and not with determining
- "good" sets of CRC parameters.</p>
- <table cellpadding="5" border="1">
- <caption>Common CRCs</caption>
- <tr>
- <th>Algorithm</th>
- <th>Example Protocols</th>
- </tr>
- <tr>
- <td><code>crc_16_type</code></td>
- <td>BISYNCH, ARC</td>
- </tr>
- <tr>
- <td><code>crc_ccitt_type</code></td>
- <td>designated by CCITT (Comité Consultatif International
- Télégraphique et Téléphonique)</td>
- </tr>
- <tr>
- <td><code>crc_xmodem_type</code></td>
- <td>XMODEM</td>
- </tr>
- <tr>
- <td><code>crc_32_type</code></td>
- <td>PKZip, AUTODIN II, Ethernet, FDDI</td>
- </tr>
- </table>
- <hr>
- <h2><a name="references">References</a></h2>
- <ul>
- <li>The CRC header itself: <cite><a href="../../boost/crc.hpp">crc.hpp</a></cite>
- <li>Some test code: <cite><a href="test/crc_test.cpp">crc_test.cpp</a></cite>
- <li>Some example code: <cite><a href="crc_example.cpp">crc_example.cpp</a></cite>
- </ul>
- <h2><a name="credits">Credits</a></h2>
- <h3><a name="contributors">Contributors</a></h3>
- <dl>
- <dt>Michael Barr (<a
- href="mailto:mbarr@netrino.com">mbarr@netrino.com</a>)
- <dd>Wrote <a
- href="http://www.netrino.com/Embedded-Systems/How-To/CRC-Calculation-C-Code">CRC
- Implementation Code in C</a>, a less-confusing guide to implementing CRC
- algorithms. (Originally published as "Slow and Steady
- Never Lost the Race" in the January 2000 issue of <cite><a
- href="http://www.embedded.com/">Embedded Systems
- Programming</a></cite>, pages 37–46. The web version used to be
- known as <cite><a href="http://www.netrino.com/Connecting/2000-01/">Easier
- Said Than Done</a></cite>.)
- <dt>Daryle Walker
- <dd>Started the library and contributed the theoretical and optimal
- CRC computation class templates and the CRC computing function
- template. Contributed <cite><a
- href="test/crc_test.cpp">crc_test.cpp</a></cite> and <cite><a
- href="crc_example.cpp">crc_example.cpp</a></cite>.
- <dt>Ross N. Williams
- <dd>Wrote <cite><a href="http://www.ross.net/crc/crcpaper.html">A
- Painless Guide to CRC Error Detection Algorithms</a></cite>, a
- definitive source of CRC information.
- </dl>
- <h3><a name="acknowledgements">Acknowledgements</a></h3>
- <p>For giving advice on compiler/C++ compliance, implementation,
- interface, algorithms, and bug reports:</p>
- <ul>
- <li>Darin Adler</li>
- <li>Beman Dawes</li>
- <li>Doug Gregor</li>
- <li>John Maddock</li>
- <li>Joe Mariadassou</li>
- <li>Jens Maurer</li>
- <li>Vladimir Prus</li>
- <li>Joel Young</li>
- </ul>
- <h3><a name="history">History</a></h3>
- <dl>
- <dt>18 Dec 2011, Daryle Walker
- <dd>Folded the two versions of <code>boost::augmented_crc</code> together.
- <dt>15 Jun 2003, Daryle Walker
- <dd>Added example program.
- <dt>14 May 2001, Daryle Walker
- <dd>Initial version.
- </dl>
- <hr>
- <p>Revised: 18 December 2011</p>
- <p>Copyright 2001, 2003, 2011 Daryle Walker. Use, modification, and distribution
- are subject to the Boost Software License, Version 1.0. (See accompanying
- file <a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or a copy at
- <<a href="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>>.)</p>
- </body>
- </html>
|