planar_canonical_ordering.hpp 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. //=======================================================================
  2. // Copyright (c) Aaron Windsor 2007
  3. //
  4. // Distributed under the Boost Software License, Version 1.0. (See
  5. // accompanying file LICENSE_1_0.txt or copy at
  6. // http://www.boost.org/LICENSE_1_0.txt)
  7. //=======================================================================
  8. #ifndef __PLANAR_CANONICAL_ORDERING_HPP__
  9. #define __PLANAR_CANONICAL_ORDERING_HPP__
  10. #include <vector>
  11. #include <list>
  12. #include <boost/config.hpp>
  13. #include <boost/next_prior.hpp>
  14. #include <boost/graph/graph_traits.hpp>
  15. #include <boost/property_map/property_map.hpp>
  16. namespace boost
  17. {
  18. namespace detail {
  19. enum planar_canonical_ordering_state
  20. {PCO_PROCESSED,
  21. PCO_UNPROCESSED,
  22. PCO_ONE_NEIGHBOR_PROCESSED,
  23. PCO_READY_TO_BE_PROCESSED};
  24. }
  25. template<typename Graph,
  26. typename PlanarEmbedding,
  27. typename OutputIterator,
  28. typename VertexIndexMap>
  29. void planar_canonical_ordering(const Graph& g,
  30. PlanarEmbedding embedding,
  31. OutputIterator ordering,
  32. VertexIndexMap vm)
  33. {
  34. typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
  35. typedef typename graph_traits<Graph>::edge_descriptor edge_t;
  36. typedef typename graph_traits<Graph>::adjacency_iterator
  37. adjacency_iterator_t;
  38. typedef typename property_traits<PlanarEmbedding>::value_type
  39. embedding_value_t;
  40. typedef typename embedding_value_t::const_iterator embedding_iterator_t;
  41. typedef iterator_property_map
  42. <typename std::vector<vertex_t>::iterator, VertexIndexMap>
  43. vertex_to_vertex_map_t;
  44. typedef iterator_property_map
  45. <typename std::vector<std::size_t>::iterator, VertexIndexMap>
  46. vertex_to_size_t_map_t;
  47. std::vector<vertex_t> processed_neighbor_vector(num_vertices(g));
  48. vertex_to_vertex_map_t processed_neighbor
  49. (processed_neighbor_vector.begin(), vm);
  50. std::vector<std::size_t> status_vector(num_vertices(g), detail::PCO_UNPROCESSED);
  51. vertex_to_size_t_map_t status(status_vector.begin(), vm);
  52. std::list<vertex_t> ready_to_be_processed;
  53. vertex_t first_vertex = *vertices(g).first;
  54. vertex_t second_vertex = first_vertex;
  55. adjacency_iterator_t ai, ai_end;
  56. for(boost::tie(ai,ai_end) = adjacent_vertices(first_vertex,g); ai != ai_end; ++ai)
  57. {
  58. if (*ai == first_vertex)
  59. continue;
  60. second_vertex = *ai;
  61. break;
  62. }
  63. ready_to_be_processed.push_back(first_vertex);
  64. status[first_vertex] = detail::PCO_READY_TO_BE_PROCESSED;
  65. ready_to_be_processed.push_back(second_vertex);
  66. status[second_vertex] = detail::PCO_READY_TO_BE_PROCESSED;
  67. while(!ready_to_be_processed.empty())
  68. {
  69. vertex_t u = ready_to_be_processed.front();
  70. ready_to_be_processed.pop_front();
  71. if (status[u] != detail::PCO_READY_TO_BE_PROCESSED && u != second_vertex)
  72. continue;
  73. embedding_iterator_t ei, ei_start, ei_end;
  74. embedding_iterator_t next_edge_itr, prior_edge_itr;
  75. ei_start = embedding[u].begin();
  76. ei_end = embedding[u].end();
  77. prior_edge_itr = prior(ei_end);
  78. while(source(*prior_edge_itr, g) == target(*prior_edge_itr,g))
  79. prior_edge_itr = prior(prior_edge_itr);
  80. for(ei = ei_start; ei != ei_end; ++ei)
  81. {
  82. edge_t e(*ei); // e = (u,v)
  83. next_edge_itr = boost::next(ei) == ei_end ? ei_start : boost::next(ei);
  84. vertex_t v = source(e,g) == u ? target(e,g) : source(e,g);
  85. vertex_t prior_vertex = source(*prior_edge_itr, g) == u ?
  86. target(*prior_edge_itr, g) : source(*prior_edge_itr, g);
  87. vertex_t next_vertex = source(*next_edge_itr, g) == u ?
  88. target(*next_edge_itr, g) : source(*next_edge_itr, g);
  89. // Need prior_vertex, u, v, and next_vertex to all be
  90. // distinct. This is possible, since the input graph is
  91. // triangulated. It'll be true all the time in a simple
  92. // graph, but loops and parallel edges cause some complications.
  93. if (prior_vertex == v || prior_vertex == u)
  94. {
  95. prior_edge_itr = ei;
  96. continue;
  97. }
  98. //Skip any self-loops
  99. if (u == v)
  100. continue;
  101. // Move next_edge_itr (and next_vertex) forwards
  102. // past any loops or parallel edges
  103. while (next_vertex == v || next_vertex == u)
  104. {
  105. next_edge_itr = boost::next(next_edge_itr) == ei_end ?
  106. ei_start : boost::next(next_edge_itr);
  107. next_vertex = source(*next_edge_itr, g) == u ?
  108. target(*next_edge_itr, g) : source(*next_edge_itr, g);
  109. }
  110. if (status[v] == detail::PCO_UNPROCESSED)
  111. {
  112. status[v] = detail::PCO_ONE_NEIGHBOR_PROCESSED;
  113. processed_neighbor[v] = u;
  114. }
  115. else if (status[v] == detail::PCO_ONE_NEIGHBOR_PROCESSED)
  116. {
  117. vertex_t x = processed_neighbor[v];
  118. //are edges (v,u) and (v,x) adjacent in the planar
  119. //embedding? if so, set status[v] = 1. otherwise, set
  120. //status[v] = 2.
  121. if ((next_vertex == x &&
  122. !(first_vertex == u && second_vertex == x)
  123. )
  124. ||
  125. (prior_vertex == x &&
  126. !(first_vertex == x && second_vertex == u)
  127. )
  128. )
  129. {
  130. status[v] = detail::PCO_READY_TO_BE_PROCESSED;
  131. }
  132. else
  133. {
  134. status[v] = detail::PCO_READY_TO_BE_PROCESSED + 1;
  135. }
  136. }
  137. else if (status[v] > detail::PCO_ONE_NEIGHBOR_PROCESSED)
  138. {
  139. //check the two edges before and after (v,u) in the planar
  140. //embedding, and update status[v] accordingly
  141. bool processed_before = false;
  142. if (status[prior_vertex] == detail::PCO_PROCESSED)
  143. processed_before = true;
  144. bool processed_after = false;
  145. if (status[next_vertex] == detail::PCO_PROCESSED)
  146. processed_after = true;
  147. if (!processed_before && !processed_after)
  148. ++status[v];
  149. else if (processed_before && processed_after)
  150. --status[v];
  151. }
  152. if (status[v] == detail::PCO_READY_TO_BE_PROCESSED)
  153. ready_to_be_processed.push_back(v);
  154. prior_edge_itr = ei;
  155. }
  156. status[u] = detail::PCO_PROCESSED;
  157. *ordering = u;
  158. ++ordering;
  159. }
  160. }
  161. template<typename Graph, typename PlanarEmbedding, typename OutputIterator>
  162. void planar_canonical_ordering(const Graph& g,
  163. PlanarEmbedding embedding,
  164. OutputIterator ordering
  165. )
  166. {
  167. planar_canonical_ordering(g, embedding, ordering, get(vertex_index,g));
  168. }
  169. } //namespace boost
  170. #endif //__PLANAR_CANONICAL_ORDERING_HPP__