insert.hpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. // Boost.Geometry Index
  2. //
  3. // R-tree R*-tree insert algorithm implementation
  4. //
  5. // Copyright (c) 2011-2015 Adam Wulkiewicz, Lodz, Poland.
  6. //
  7. // This file was modified by Oracle on 2019.
  8. // Modifications copyright (c) 2019 Oracle and/or its affiliates.
  9. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
  10. //
  11. // Use, modification and distribution is subject to the Boost Software License,
  12. // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  13. // http://www.boost.org/LICENSE_1_0.txt)
  14. #ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
  15. #define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
  16. #include <boost/core/ignore_unused.hpp>
  17. #include <boost/geometry/index/detail/algorithms/content.hpp>
  18. namespace boost { namespace geometry { namespace index {
  19. namespace detail { namespace rtree { namespace visitors {
  20. namespace rstar {
  21. // Utility to distinguish between default and non-default index strategy
  22. template <typename Point1, typename Point2, typename Strategy>
  23. struct comparable_distance_point_point
  24. {
  25. typedef typename Strategy::comparable_distance_point_point_strategy_type strategy_type;
  26. typedef typename geometry::comparable_distance_result
  27. <
  28. Point1, Point2, strategy_type
  29. >::type result_type;
  30. static inline strategy_type get_strategy(Strategy const& strategy)
  31. {
  32. return strategy.get_comparable_distance_point_point_strategy();
  33. }
  34. };
  35. template <typename Point1, typename Point2>
  36. struct comparable_distance_point_point<Point1, Point2, default_strategy>
  37. {
  38. typedef default_strategy strategy_type;
  39. typedef typename geometry::default_comparable_distance_result
  40. <
  41. Point1, Point2
  42. >::type result_type;
  43. static inline strategy_type get_strategy(default_strategy const& )
  44. {
  45. return strategy_type();
  46. }
  47. };
  48. template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  49. class remove_elements_to_reinsert
  50. {
  51. public:
  52. typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
  53. typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
  54. typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
  55. typedef typename Options::parameters_type parameters_type;
  56. //typedef typename Allocators::internal_node_pointer internal_node_pointer;
  57. typedef internal_node * internal_node_pointer;
  58. template <typename ResultElements, typename Node>
  59. static inline void apply(ResultElements & result_elements,
  60. Node & n,
  61. internal_node_pointer parent,
  62. size_t current_child_index,
  63. parameters_type const& parameters,
  64. Translator const& translator,
  65. Allocators & allocators)
  66. {
  67. typedef typename rtree::elements_type<Node>::type elements_type;
  68. typedef typename elements_type::value_type element_type;
  69. typedef typename geometry::point_type<Box>::type point_type;
  70. typedef typename index::detail::strategy_type<parameters_type>::type strategy_type;
  71. // TODO: awulkiew - change second point_type to the point type of the Indexable?
  72. typedef rstar::comparable_distance_point_point
  73. <
  74. point_type, point_type, strategy_type
  75. > comparable_distance_pp;
  76. typedef typename comparable_distance_pp::result_type comparable_distance_type;
  77. elements_type & elements = rtree::elements(n);
  78. const size_t elements_count = parameters.get_max_elements() + 1;
  79. const size_t reinserted_elements_count = (::std::min)(parameters.get_reinserted_elements(), elements_count - parameters.get_min_elements());
  80. BOOST_GEOMETRY_INDEX_ASSERT(parent, "node shouldn't be the root node");
  81. BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == elements_count, "unexpected elements number");
  82. BOOST_GEOMETRY_INDEX_ASSERT(0 < reinserted_elements_count, "wrong value of elements to reinsert");
  83. // calculate current node's center
  84. point_type node_center;
  85. geometry::centroid(rtree::elements(*parent)[current_child_index].first, node_center);
  86. // fill the container of centers' distances of children from current node's center
  87. typedef typename index::detail::rtree::container_from_elements_type<
  88. elements_type,
  89. std::pair<comparable_distance_type, element_type>
  90. >::type sorted_elements_type;
  91. sorted_elements_type sorted_elements;
  92. // If constructor is used instead of resize() MS implementation leaks here
  93. sorted_elements.reserve(elements_count); // MAY THROW, STRONG (V, E: alloc, copy)
  94. typename comparable_distance_pp::strategy_type
  95. cdist_strategy = comparable_distance_pp::get_strategy(index::detail::get_strategy(parameters));
  96. for ( typename elements_type::const_iterator it = elements.begin() ;
  97. it != elements.end() ; ++it )
  98. {
  99. point_type element_center;
  100. geometry::centroid( rtree::element_indexable(*it, translator), element_center);
  101. sorted_elements.push_back(std::make_pair(
  102. geometry::comparable_distance(node_center, element_center, cdist_strategy),
  103. *it)); // MAY THROW (V, E: copy)
  104. }
  105. // sort elements by distances from center
  106. std::partial_sort(
  107. sorted_elements.begin(),
  108. sorted_elements.begin() + reinserted_elements_count,
  109. sorted_elements.end(),
  110. distances_dsc<comparable_distance_type, element_type>); // MAY THROW, BASIC (V, E: copy)
  111. // copy elements which will be reinserted
  112. result_elements.clear();
  113. result_elements.reserve(reinserted_elements_count); // MAY THROW, STRONG (V, E: alloc, copy)
  114. for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() ;
  115. it != sorted_elements.begin() + reinserted_elements_count ; ++it )
  116. {
  117. result_elements.push_back(it->second); // MAY THROW (V, E: copy)
  118. }
  119. BOOST_TRY
  120. {
  121. // copy remaining elements to the current node
  122. elements.clear();
  123. elements.reserve(elements_count - reinserted_elements_count); // SHOULDN'T THROW (new_size <= old size)
  124. for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() + reinserted_elements_count;
  125. it != sorted_elements.end() ; ++it )
  126. {
  127. elements.push_back(it->second); // MAY THROW (V, E: copy)
  128. }
  129. }
  130. BOOST_CATCH(...)
  131. {
  132. elements.clear();
  133. for ( typename sorted_elements_type::iterator it = sorted_elements.begin() ;
  134. it != sorted_elements.end() ; ++it )
  135. {
  136. destroy_element<Value, Options, Translator, Box, Allocators>::apply(it->second, allocators);
  137. }
  138. BOOST_RETHROW // RETHROW
  139. }
  140. BOOST_CATCH_END
  141. ::boost::ignore_unused(parameters);
  142. }
  143. private:
  144. template <typename Distance, typename El>
  145. static inline bool distances_asc(
  146. std::pair<Distance, El> const& d1,
  147. std::pair<Distance, El> const& d2)
  148. {
  149. return d1.first < d2.first;
  150. }
  151. template <typename Distance, typename El>
  152. static inline bool distances_dsc(
  153. std::pair<Distance, El> const& d1,
  154. std::pair<Distance, El> const& d2)
  155. {
  156. return d1.first > d2.first;
  157. }
  158. };
  159. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Box, typename Allocators>
  160. struct level_insert_elements_type
  161. {
  162. typedef typename rtree::elements_type<
  163. typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type
  164. >::type type;
  165. };
  166. template <typename Value, typename Options, typename Box, typename Allocators>
  167. struct level_insert_elements_type<0, Value, Value, Options, Box, Allocators>
  168. {
  169. typedef typename rtree::elements_type<
  170. typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type
  171. >::type type;
  172. };
  173. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  174. struct level_insert_base
  175. : public detail::insert<Element, Value, Options, Translator, Box, Allocators>
  176. {
  177. typedef detail::insert<Element, Value, Options, Translator, Box, Allocators> base;
  178. typedef typename base::node node;
  179. typedef typename base::internal_node internal_node;
  180. typedef typename base::leaf leaf;
  181. typedef typename level_insert_elements_type<InsertIndex, Element, Value, Options, Box, Allocators>::type elements_type;
  182. typedef typename index::detail::rtree::container_from_elements_type<
  183. elements_type,
  184. typename elements_type::value_type
  185. >::type result_elements_type;
  186. typedef typename Options::parameters_type parameters_type;
  187. typedef typename Allocators::node_pointer node_pointer;
  188. typedef typename Allocators::size_type size_type;
  189. inline level_insert_base(node_pointer & root,
  190. size_type & leafs_level,
  191. Element const& element,
  192. parameters_type const& parameters,
  193. Translator const& translator,
  194. Allocators & allocators,
  195. size_type relative_level)
  196. : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
  197. , result_relative_level(0)
  198. {}
  199. template <typename Node>
  200. inline void handle_possible_reinsert_or_split_of_root(Node &n)
  201. {
  202. BOOST_GEOMETRY_INDEX_ASSERT(result_elements.empty(), "reinsert should be handled only once for level");
  203. result_relative_level = base::m_leafs_level - base::m_traverse_data.current_level;
  204. // overflow
  205. if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
  206. {
  207. // node isn't root node
  208. if ( !base::m_traverse_data.current_is_root() )
  209. {
  210. // NOTE: exception-safety
  211. // After an exception result_elements may contain garbage, don't use it
  212. rstar::remove_elements_to_reinsert<Value, Options, Translator, Box, Allocators>::apply(
  213. result_elements, n,
  214. base::m_traverse_data.parent, base::m_traverse_data.current_child_index,
  215. base::m_parameters, base::m_translator, base::m_allocators); // MAY THROW, BASIC (V, E: alloc, copy)
  216. }
  217. // node is root node
  218. else
  219. {
  220. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<Node>(*base::m_root_node), "node should be the root node");
  221. base::split(n); // MAY THROW (V, E: alloc, copy, N: alloc)
  222. }
  223. }
  224. }
  225. template <typename Node>
  226. inline void handle_possible_split(Node &n) const
  227. {
  228. // overflow
  229. if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
  230. {
  231. base::split(n); // MAY THROW (V, E: alloc, copy, N: alloc)
  232. }
  233. }
  234. template <typename Node>
  235. inline void recalculate_aabb_if_necessary(Node const& n) const
  236. {
  237. if ( !result_elements.empty() && !base::m_traverse_data.current_is_root() )
  238. {
  239. // calulate node's new box
  240. recalculate_aabb(n);
  241. }
  242. }
  243. template <typename Node>
  244. inline void recalculate_aabb(Node const& n) const
  245. {
  246. base::m_traverse_data.current_element().first =
  247. elements_box<Box>(rtree::elements(n).begin(), rtree::elements(n).end(),
  248. base::m_translator,
  249. index::detail::get_strategy(base::m_parameters));
  250. }
  251. inline void recalculate_aabb(leaf const& n) const
  252. {
  253. base::m_traverse_data.current_element().first =
  254. values_box<Box>(rtree::elements(n).begin(), rtree::elements(n).end(),
  255. base::m_translator,
  256. index::detail::get_strategy(base::m_parameters));
  257. }
  258. size_type result_relative_level;
  259. result_elements_type result_elements;
  260. };
  261. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  262. struct level_insert
  263. : public level_insert_base<InsertIndex, Element, Value, Options, Translator, Box, Allocators>
  264. {
  265. typedef level_insert_base<InsertIndex, Element, Value, Options, Translator, Box, Allocators> base;
  266. typedef typename base::node node;
  267. typedef typename base::internal_node internal_node;
  268. typedef typename base::leaf leaf;
  269. typedef typename Options::parameters_type parameters_type;
  270. typedef typename Allocators::node_pointer node_pointer;
  271. typedef typename Allocators::size_type size_type;
  272. inline level_insert(node_pointer & root,
  273. size_type & leafs_level,
  274. Element const& element,
  275. parameters_type const& parameters,
  276. Translator const& translator,
  277. Allocators & allocators,
  278. size_type relative_level)
  279. : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
  280. {}
  281. inline void operator()(internal_node & n)
  282. {
  283. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
  284. if ( base::m_traverse_data.current_level < base::m_level )
  285. {
  286. // next traversing step
  287. base::traverse(*this, n); // MAY THROW (E: alloc, copy, N: alloc)
  288. // further insert
  289. if ( 0 < InsertIndex )
  290. {
  291. BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");
  292. if ( base::m_traverse_data.current_level == base::m_level - 1 )
  293. {
  294. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  295. }
  296. }
  297. }
  298. else
  299. {
  300. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level, "unexpected level");
  301. BOOST_TRY
  302. {
  303. // push new child node
  304. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (E: alloc, copy)
  305. }
  306. BOOST_CATCH(...)
  307. {
  308. // NOTE: exception-safety
  309. // if the insert fails above, the element won't be stored in the tree, so delete it
  310. rtree::visitors::destroy<Value, Options, Translator, Box, Allocators> del_v(base::m_element.second, base::m_allocators);
  311. rtree::apply_visitor(del_v, *base::m_element.second);
  312. BOOST_RETHROW // RETHROW
  313. }
  314. BOOST_CATCH_END
  315. // first insert
  316. if ( 0 == InsertIndex )
  317. {
  318. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  319. }
  320. // not the first insert
  321. else
  322. {
  323. base::handle_possible_split(n); // MAY THROW (E: alloc, N: alloc)
  324. }
  325. }
  326. base::recalculate_aabb_if_necessary(n);
  327. }
  328. inline void operator()(leaf &)
  329. {
  330. BOOST_GEOMETRY_INDEX_ASSERT(false, "this visitor can't be used for a leaf");
  331. }
  332. };
  333. template <size_t InsertIndex, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  334. struct level_insert<InsertIndex, Value, Value, Options, Translator, Box, Allocators>
  335. : public level_insert_base<InsertIndex, Value, Value, Options, Translator, Box, Allocators>
  336. {
  337. typedef level_insert_base<InsertIndex, Value, Value, Options, Translator, Box, Allocators> base;
  338. typedef typename base::node node;
  339. typedef typename base::internal_node internal_node;
  340. typedef typename base::leaf leaf;
  341. typedef typename Options::parameters_type parameters_type;
  342. typedef typename Allocators::node_pointer node_pointer;
  343. typedef typename Allocators::size_type size_type;
  344. inline level_insert(node_pointer & root,
  345. size_type & leafs_level,
  346. Value const& v,
  347. parameters_type const& parameters,
  348. Translator const& translator,
  349. Allocators & allocators,
  350. size_type relative_level)
  351. : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
  352. {}
  353. inline void operator()(internal_node & n)
  354. {
  355. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
  356. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level, "unexpected level");
  357. // next traversing step
  358. base::traverse(*this, n); // MAY THROW (V, E: alloc, copy, N: alloc)
  359. BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");
  360. if ( base::m_traverse_data.current_level == base::m_level - 1 )
  361. {
  362. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  363. }
  364. base::recalculate_aabb_if_necessary(n);
  365. }
  366. inline void operator()(leaf & n)
  367. {
  368. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
  369. "unexpected level");
  370. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
  371. base::m_level == (std::numeric_limits<size_t>::max)(),
  372. "unexpected level");
  373. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (V: alloc, copy)
  374. base::handle_possible_split(n); // MAY THROW (V: alloc, copy, N: alloc)
  375. }
  376. };
  377. template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  378. struct level_insert<0, Value, Value, Options, Translator, Box, Allocators>
  379. : public level_insert_base<0, Value, Value, Options, Translator, Box, Allocators>
  380. {
  381. typedef level_insert_base<0, Value, Value, Options, Translator, Box, Allocators> base;
  382. typedef typename base::node node;
  383. typedef typename base::internal_node internal_node;
  384. typedef typename base::leaf leaf;
  385. typedef typename Options::parameters_type parameters_type;
  386. typedef typename Allocators::node_pointer node_pointer;
  387. typedef typename Allocators::size_type size_type;
  388. inline level_insert(node_pointer & root,
  389. size_type & leafs_level,
  390. Value const& v,
  391. parameters_type const& parameters,
  392. Translator const& translator,
  393. Allocators & allocators,
  394. size_type relative_level)
  395. : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
  396. {}
  397. inline void operator()(internal_node & n)
  398. {
  399. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level,
  400. "unexpected level");
  401. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level,
  402. "unexpected level");
  403. // next traversing step
  404. base::traverse(*this, n); // MAY THROW (V: alloc, copy, N: alloc)
  405. base::recalculate_aabb_if_necessary(n);
  406. }
  407. inline void operator()(leaf & n)
  408. {
  409. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
  410. "unexpected level");
  411. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
  412. base::m_level == (std::numeric_limits<size_t>::max)(),
  413. "unexpected level");
  414. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (V: alloc, copy)
  415. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (V: alloc, copy, N: alloc)
  416. base::recalculate_aabb_if_necessary(n);
  417. }
  418. };
  419. } // namespace rstar
  420. // R*-tree insert visitor
  421. // After passing the Element to insert visitor the Element is managed by the tree
  422. // I.e. one should not delete the node passed to the insert visitor after exception is thrown
  423. // because this visitor may delete it
  424. template <typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  425. class insert<Element, Value, Options, Translator, Box, Allocators, insert_reinsert_tag>
  426. : public rtree::visitor<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag, false>::type
  427. {
  428. typedef typename Options::parameters_type parameters_type;
  429. typedef typename rtree::node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type node;
  430. typedef typename rtree::internal_node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
  431. typedef typename rtree::leaf<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
  432. typedef typename Allocators::node_pointer node_pointer;
  433. typedef typename Allocators::size_type size_type;
  434. public:
  435. inline insert(node_pointer & root,
  436. size_type & leafs_level,
  437. Element const& element,
  438. parameters_type const& parameters,
  439. Translator const& translator,
  440. Allocators & allocators,
  441. size_type relative_level = 0)
  442. : m_root(root), m_leafs_level(leafs_level), m_element(element)
  443. , m_parameters(parameters), m_translator(translator)
  444. , m_relative_level(relative_level), m_allocators(allocators)
  445. {}
  446. inline void operator()(internal_node & n)
  447. {
  448. boost::ignore_unused(n);
  449. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<internal_node>(*m_root), "current node should be the root");
  450. // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
  451. if ( m_parameters.get_reinserted_elements() > 0 )
  452. {
  453. rstar::level_insert<0, Element, Value, Options, Translator, Box, Allocators> lins_v(
  454. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  455. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  456. if ( !lins_v.result_elements.empty() )
  457. {
  458. recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level); // MAY THROW (V, E: alloc, copy, N: alloc)
  459. }
  460. }
  461. else
  462. {
  463. visitors::insert<Element, Value, Options, Translator, Box, Allocators, insert_default_tag> ins_v(
  464. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  465. rtree::apply_visitor(ins_v, *m_root);
  466. }
  467. }
  468. inline void operator()(leaf & n)
  469. {
  470. boost::ignore_unused(n);
  471. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<leaf>(*m_root), "current node should be the root");
  472. // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
  473. if ( m_parameters.get_reinserted_elements() > 0 )
  474. {
  475. rstar::level_insert<0, Element, Value, Options, Translator, Box, Allocators> lins_v(
  476. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  477. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  478. // we're in the root, so root should be split and there should be no elements to reinsert
  479. BOOST_GEOMETRY_INDEX_ASSERT(lins_v.result_elements.empty(), "unexpected state");
  480. }
  481. else
  482. {
  483. visitors::insert<Element, Value, Options, Translator, Box, Allocators, insert_default_tag> ins_v(
  484. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  485. rtree::apply_visitor(ins_v, *m_root);
  486. }
  487. }
  488. private:
  489. template <typename Elements>
  490. inline void recursive_reinsert(Elements & elements, size_t relative_level)
  491. {
  492. typedef typename Elements::value_type element_type;
  493. // reinsert children starting from the minimum distance
  494. typename Elements::reverse_iterator it = elements.rbegin();
  495. for ( ; it != elements.rend() ; ++it)
  496. {
  497. rstar::level_insert<1, element_type, Value, Options, Translator, Box, Allocators> lins_v(
  498. m_root, m_leafs_level, *it, m_parameters, m_translator, m_allocators, relative_level);
  499. BOOST_TRY
  500. {
  501. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  502. }
  503. BOOST_CATCH(...)
  504. {
  505. ++it;
  506. for ( ; it != elements.rend() ; ++it)
  507. rtree::destroy_element<Value, Options, Translator, Box, Allocators>::apply(*it, m_allocators);
  508. BOOST_RETHROW // RETHROW
  509. }
  510. BOOST_CATCH_END
  511. BOOST_GEOMETRY_INDEX_ASSERT(relative_level + 1 == lins_v.result_relative_level, "unexpected level");
  512. // non-root relative level
  513. if ( lins_v.result_relative_level < m_leafs_level && !lins_v.result_elements.empty())
  514. {
  515. recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level); // MAY THROW (V, E: alloc, copy, N: alloc)
  516. }
  517. }
  518. }
  519. node_pointer & m_root;
  520. size_type & m_leafs_level;
  521. Element const& m_element;
  522. parameters_type const& m_parameters;
  523. Translator const& m_translator;
  524. size_type m_relative_level;
  525. Allocators & m_allocators;
  526. };
  527. }}} // namespace detail::rtree::visitors
  528. }}} // namespace boost::geometry::index
  529. #endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP